

07 February 2025

John Salguero State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles, CA 90013

RE: Autospool-RWB4_WildFireResponse_2025

Dear John Salguero,

The following pages contain the analytical results for the sample(s) received for your project. The second page of this report lists the individual sample descriptions with the corresponding laboratory number(s). We have also provided a copy of the Chain of Custody document (if received with your sample(s)). Please note that any unused portion of the sample(s) may be responsibly discarded after 30 days from the above report date unless you have requested otherwise.

Thank you for the opportunity to serve your analytical needs. If you have any questions or concerns regarding this report please contact our Client Service Department.

Sincerely,

Autospool Station For Alexandria L. Guerra Special Programs Coordinator

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Lab ID	Matrix	Station Code	Location Code	Sampled	Received
DPH 105B	C5A3038-01	Sample Water	N/A	N/A	01/27/25 09:10	01/27/25 18:01
SMP 2-7	C5A3038-02	Sample Water	N/A	N/A	01/27/25 09:33	01/27/25 18:01
DPH 103	C5A3038-03	Sample Water	N/A	N/A	01/27/25 11:30	01/27/25 18:01
SMB 1-16	C5A3038-04	Sample Water	N/A	N/A	01/27/25 10:11	01/27/25 18:01
SMP 2-10	C5A3038-05	Sample Water	N/A	N/A	01/27/25 07:30	01/27/25 18:01
DPH 107B	C5A3038-06	Sample Water	N/A	N/A	01/27/25 08:33	01/27/25 18:01
SMB 3-4	C5A3038-07	Sample Water	N/A	N/A	01/27/25 08:52	01/27/25 18:01
DPH 108	C5A3038-08	Sample Water	N/A	N/A	01/27/25 08:15	01/27/25 18:01
SMB 2-4	C5A3038-09	Sample Water	N/A	N/A	01/27/25 11:07	01/27/25 18:01
SMB 1-18	C5A3038-10	Sample Water	N/A	N/A	01/27/25 10:32	01/27/25 18:01
SMB 1-14	C5A3038-11	Sample Water	N/A	N/A	01/27/25 09:13	01/27/25 18:01
DPH 001	C5A3038-12	Sample Water	N/A	N/A	01/27/25 09:46	01/27/25 18:01

Babcock Laboratories, Inc. - Riverside

Γ

Babcock Laboratories, Inc. - Riverside 6100 Quail Valley Court Riverside, CA 92507-0704 (951) 653-3351

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 105B C5A3038-01 (Liquid, Sampled: 01/27/25 09:10)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	< Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	430	3.3	10	mg/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Total Hardness	7000		10	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1400	3.3	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1100	3.2	9.7	"	1	5B04167	02/04/25	02/04/25	"	
Anions										
Bicarbonate	130	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"		
Total Alkalinity	130	5.0	5.0	"	"	"	"	"		
Nitrate as N	12	6.2	10	mg/L	50	5A27217	01/28/25	01/28/25	EPA 300.0	
Nitrate/Nitrite as N	0.031	0.0038	0.010	"	1	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2800	18	25	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	ND	0.1	0.1	mL/L	1	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	34000	500	500	mg/L	50	5A29162	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	5	0.5	0.5	"	1	5A29101	01/29/25	01/29/25	SM 2540D	NRPDo
Aggregate Organic Compounds										
Total Organic Carbon	1.0		0.70	mg/L	1	5A28145	01/28/25	01/28/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.03	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.78	2.5	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.02	0.02	0.05	"	1	5A28192	01/28/25	01/28/25	SM 4500P B E	
Kjeldahl Nitrogen	ND	0.9	1.0	"	"	5A30111	01/31/25	02/03/25	EPA 351.2	N_RLm
Total Nitrogen (N)	ND	0.93	1.0	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 105B

C5A3038-01 (Liquid, Sampled: 01/27/25 09:10)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	N_RLm
Aluminum-Dissolved	560	160	490	"	1	5B04167	02/04/25	02/04/25	"	
Arsenic	7.2	7.1	20	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	N_RLm, J
Arsenic-Dissolved	ND	7.1	20	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Cadmium	ND	0.99	4.0	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Total Chromium	ND	16	80	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Copper	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Iron	ND	260	500	"	10	5A28182	01/28/25	01/30/25	EPA 200.7	N_RLm
Iron-Dissolved	ND	250	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Mercury	ND	0.11	0.20	"	"	5A31080	01/31/25	02/03/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	02/03/25	"	
Manganese	ND	13	40	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	N_RLm
Manganese-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Nickel	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Lead	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Lead-Dissolved	ND	13	40		1	5A29096	01/30/25	01/30/25	"	N_RLm
Selenium	120	6.7	20	"	4	5A28160	01/28/25	01/30/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	ND	20	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Zinc-Dissolved	ND	20	40		1	5A29096	01/30/25	01/30/25		N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 105B

C5A3038-01 (Liquid, Sampled: 01/27/25 09:10)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	ories, In	c River	side				
Organochlorine Pesticides and I	PCBs by EPA 80	000 Series	5							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"	"	"	"	"		
Aroclor 1232	ND	0.81	1.0	"	"	"	"	"	•	
Aroclor 1242	ND	0.70	1.0	"	"	"	"	"		
Aroclor 1248	ND	0.48	1.0	"	"	"	"	"		
Aroclor 1254	ND	0.73	2.0	"	"			"	"	
Aroclor 1260	ND	0.15	1.0	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl			68 %	5-1	34	"	"	"	"	
• • • • •	· · -	~ ~ ~								
Acenaphthene	ND	0.02	0.05	ug/L	1	5A31119	01/31/25	02/03/25	EPA 8270C SIM	
Acenaphthene Acenaphthylene	ND ND	0.02 0.02	0.05 0.05	ug/L "	1 "	5A31119 "	01/31/25 "	02/03/25		
				-					SIM	
Acenaphthylene	ND	0.02	0.05	"	"	"	u	"	SIM "	
Acenaphthylene Anthracene	ND ND	0.02 0.01	0.05 0.05	"					SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene	ND ND ND	0.02 0.01 0.02	0.05 0.05 0.05	"		"	"	" "	SIM " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND	0.02 0.01 0.02 0.02	0.05 0.05 0.05 0.05	"		11 11 11	11 11 11	11 11 11	SIM " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND ND	0.02 0.01 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	" " "		" " "	" " "	" " "	SIM " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05	" " " " "		 			SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "					SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "					SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "					SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "					SIM " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05						SIM " " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05						SIM " " " " " " "	

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMP 2-7

C5A3038-02 (Liquid, Sampled: 01/27/25 09:33)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	390	3.3	10	mg/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Total Hardness	6200		10	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	3.3	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1200	3.2	9.7	"	1	5B04167	02/04/25	02/04/25	"	
Anions										
Bicarbonate	140	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"		
Total Alkalinity	140	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	2.5	4.0	mg/L	20	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Nitrate/Nitrite as N	0.30	0.038	0.10	"	10	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2500	7.2	10	"	20	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	ND	0.1	0.1	mL/L	1	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	32000	500	500	mg/L	50	5A28220	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	160	2	2	"	5	5A29101	01/29/25	01/29/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	5.6		0.70	mg/L	1	5A28145	01/28/25	01/28/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.1	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.31	1.0	"	20	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.24	0.02	0.05	"	1	5A28192	01/28/25	01/28/25	SM 4500P B E	
Kjeldahl Nitrogen	1.4	0.9	1.0	"	"	5A30111	01/31/25	02/03/25	EPA 351.2	
Total Nitrogen (N)	1.7	0.96	1.1	"	10	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMP 2-7

C5A3038-02 (Liquid, Sampled: 01/27/25 09:33)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	3100	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Aluminum-Dissolved	250	160	490	"	1	5B04167	02/04/25	02/04/25	"	J
Arsenic	8.2	7.1	20	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Arsenic-Dissolved	ND	7.1	20	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Cadmium	ND	0.99	4.0	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Total Chromium	ND	16	80	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Copper	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Iron	4400	260	500	"	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Iron-Dissolved	ND	250	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Mercury	ND	0.56	1.0	"	"	5A31080	01/31/25	02/03/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"			02/03/25	"	
Manganese	210	13	40	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	
Manganese-Dissolved	74	13	40	"	1	5A29096	01/30/25	01/30/25	"	
Nickel	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Lead	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Lead-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Selenium	110	6.7	20	"	4	5A28160	01/28/25	01/30/25	"	
Selenium-Dissolved	100	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	ND	20	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Zinc-Dissolved	ND	20	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMP 2-7

C5A3038-02 (Liquid, Sampled: 01/27/25 09:33)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	ories, In	c River	side				
Organochlorine Pesticides and	PCBs by EPA 80	000 Serie	5							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"	"	"	"	"	•	
Aroclor 1232	ND	0.81	1.0	"	"	"	"	"	•	
Aroclor 1242	ND	0.70	1.0	"	"			"	"	
Aroclor 1248	ND	0.48	1.0	"	"			"	"	
Aroclor 1254	ND	0.73	2.0	"	"			"	"	
Aroclor 1260	ND	0.15	1.0	"	"		"	"		
Surrogate: Decachlorobiphenyl			39 %	5-1	134	"	"	"	"	
Acenaphthene	ND	0.02	0.05	ug/L	1	5A31119	02/01/25	02/03/25	EPA 8270C	
Semivolatile Organic Compound	ND		0.05			5404440	00/04/05	00/00/07		
Acenaphthene	ND	0.02	0.05	ug/L	1	5A31119	02/01/25	02/03/25		
				ug/L "	"	5A31119 "	"	"	SIM	
Acenaphthylene	ND	0.02	0.05	-			" "		SIM	
Acenaphthylene Anthracene	ND ND	0.02 0.01	0.05 0.05	"	"	"	"	"	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene	ND ND ND	0.02 0.01 0.02	0.05 0.05 0.05	"		"		"	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND	0.02 0.01 0.02 0.02	0.05 0.05 0.05 0.05	" "		" "	"	"	SIM " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND ND	0.02 0.01 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	" " "		11 11 11	11 11 11	n n n	SIM " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND	0.02 0.01 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05	" " "		" " "	" " "		SIM " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	" " " " " "		" " "			SIM " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05	11 11 11 11 11 11					SIM " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "					SIM " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "					SIM " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " " "		" " " " " " " " " " " " " " " " " " "		" " " " " "	SIM " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05					" " " " " " "	SIM " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05						SIM " " " " " " "	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 103

C5A3038-03 (Liquid, Sampled: 01/27/25 11:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	(Labora	tories, Inc	c Rivers	side				
Cations										
Calcium	420	3.3	10	mg/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Total Hardness	6700		10	"	"	"	u	"	SM 2340B/EPA 200.7	
Magnesium	1400	3.3	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1300	3.2	9.7	"	1	5B04167	02/04/25	02/04/25	"	
Anions										
Bicarbonate	130	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"		
Total Alkalinity	130	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.2	10	mg/L	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Nitrate/Nitrite as N	0.037	0.0038	0.010	"	1	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2700	18	25	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	0.1	0.1	0.1	mL/L	1.02	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	34000	500	500	mg/L	50	5A28220	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	34	2	2	"	3.33333	5A30120	01/30/25	01/30/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	2.8		0.70	mg/L	1	5A28145	01/28/25	01/28/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.08	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.78	2.5	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.12	0.02	0.05		1	5A28192	01/28/25	01/28/25	SM 4500P B E	
Kjeldahl Nitrogen	ND	0.9	1.0	"	"	5A30111	01/31/25	02/03/25	EPA 351.2	N_RLm
Total Nitrogen (N)	ND	0.93	1.0	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 103

C5A3038-03 (Liquid, Sampled: 01/27/25 11:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	1700	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Aluminum-Dissolved	590	160	490	"	1	5B04167	02/04/25	02/04/25	"	
Arsenic	8.3	7.1	20	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Arsenic-Dissolved	7.2	7.1	20	"	1	5A29096	01/30/25	01/30/25	"	J, N_RLm
Cadmium	ND	0.99	4.0	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Total Chromium	ND	16	80	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Copper	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Iron	2400	260	500	"	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Iron-Dissolved	ND	250	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Mercury	ND	0.56	1.0	"		5A31080	01/31/25	02/03/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"		"		02/03/25	"	
Manganese	110	13	40	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	
Manganese-Dissolved	36	13	40	"	1	5A29096	01/30/25	01/30/25	"	J, N_RLm
Nickel	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Lead	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Lead-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Selenium	120	6.7	20	"	4	5A28160	01/28/25	01/30/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	ND	20	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Zinc-Dissolved	ND	20	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 103

C5A3038-03 (Liquid, Sampled: 01/27/25 11:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	ories, In	c River	side				
Organochlorine Pesticides and P	CBs by EPA 80	000 Serie	5							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"	"	"	"	"		
Aroclor 1232	ND	0.81	1.0	"	"		"	"		
Aroclor 1242	ND	0.70	1.0	"	"		"	"		
Aroclor 1248	ND	0.48	1.0	"	"		"	"		
Aroclor 1254	ND	0.73	2.0	"	"		"	"		
Aroclor 1260	ND	0.15	1.0	"	"		"	"	"	
Surrogate: Decachlorobiphenyl			43 %	5-1	134	"	"	"	"	
			0.05	ua/L	1	5A31119	02/01/25	02/03/25	EPA 8270C	
Semivolatile Organic Compounds Acenaphthene	ND	0.02	0.05	ug/L	1	5A31119	02/01/25	02/03/25	EPA 8270C	
Acenaphthene	ND	0.02		ug/L "	1	5A31119 "	02/01/25	02/03/25	EPA 8270C SIM	
Acenaphthene Acenaphthylene	ND ND	0.02	0.05						SIM	
Acenaphthene Acenaphthylene Anthracene	ND ND ND	0.02 0.02 0.01	0.05 0.05		"	"	u	"	SIM "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	ND ND ND ND	0.02 0.02 0.01 0.02	0.05 0.05 0.05	"					SIM "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND ND	0.02 0.02 0.01 0.02 0.02	0.05 0.05 0.05 0.05	 		"		" "	SIM "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	" " "			" " "	" " "	SIM " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01	0.05 0.05 0.05 0.05 0.05 0.05	" " "			 	" " "	SIM " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05			" " "		" " "	SIM " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "			•		SIM " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ND ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "			• • • • • • • • • •		SIM " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND ND ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	 					SIM " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "			• • • • • •		SIM " " " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05				• • • • • • • •		SIM " " " " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05						SIM " " " " " " "	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 1-16

C5A3038-04 (Liquid, Sampled: 01/27/25 10:11)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, Inc	c Rivers	side				
Cations										
Calcium	410	3.3	10	mg/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Total Hardness	6600		10	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	3.3	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1300	3.2	9.7	"	1	5B04167	02/04/25	02/04/25	"	
Anions										
Bicarbonate	130	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"		"	"	"	
Total Alkalinity	130	5.0	5.0	"	"		"	"	"	
Nitrate as N	ND	6.2	10	mg/L	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Nitrate/Nitrite as N	0.015	0.0038	0.010		1	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2800	18	25		50	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	ND	0.1	0.1	mL/L	1	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	34000	500	500	mg/L	50	5A28220	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	19	0.7	0.7	"	1.33333	5A30120	01/30/25	01/30/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	1.2		0.70	mg/L	1	5A28145	01/28/25	01/28/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.04	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.78	2.5	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.04	0.02	0.05	"	1	5A28192	01/28/25	01/28/25	SM 4500P B E	
Kjeldahl Nitrogen	1.2	0.9	1.0	"	"	5A30111	01/31/25	02/03/25	EPA 351.2	
Total Nitrogen (N)	1.2	0.93	1.0	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 1-16

C5A3038-04 (Liquid, Sampled: 01/27/25 10:11)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	600	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Aluminum-Dissolved	ND	160	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Arsenic	7.8	7.1	20	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Arsenic-Dissolved	ND	7.1	20	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Cadmium	ND	0.99	4.0	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Total Chromium	ND	16	80	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Copper	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Iron	730	260	500	"	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Iron-Dissolved	ND	250	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Mercury	ND	0.56	1.0	"		5A31080	01/31/25	02/03/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"		"	"	02/03/25	"	
Manganese	27	13	40	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Manganese-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Nickel	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Lead	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Lead-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Selenium	120	6.7	20	"	4	5A28160	01/28/25	01/30/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	ND	20	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Zinc-Dissolved	ND	20	40		1	5A29096	01/30/25	01/30/25	"	N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 1-16

C5A3038-04 (Liquid, Sampled: 01/27/25 10:11)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c River	side				
Organochlorine Pesticides and I	PCBs by EPA 80	000 Series	5							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"	"	"	"	"		
Aroclor 1232	ND	0.81	1.0	"	"	"	"	"		
Aroclor 1242	ND	0.70	1.0	"	"	"	"	"		
Aroclor 1248	ND	0.48	1.0	"	"	"	"	"		
Aroclor 1254	ND	0.73	2.0	"	"			"		
Aroclor 1260	ND	0.15	1.0	"	"		"	"		
Surrogate: Decachlorobiphenyl			61 %	5-1	134	"	п	"	"	
Semivolatile Organic Compound	le by EPA 8270									
Acenaphthene	ND	0.02	0.05	ug/L	1	5A31119	02/01/25	02/03/25	EPA 8270C SIM	
			0.05	ug/L "	1	5A31119 "	02/01/25	02/03/25	EPA 8270C SIM "	
Acenaphthene	ND	0.02		-					SIM	
Acenaphthene Acenaphthylene	ND ND	0.02	0.05	"	"	"	u	"	SIM "	
Acenaphthene Acenaphthylene Anthracene	ND ND ND	0.02 0.02 0.01	0.05 0.05	"					SIM "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene	ND ND ND ND	0.02 0.02 0.01 0.02	0.05 0.05 0.05			"	"	" "	SIM " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02	0.05 0.05 0.05 0.05	"	•	11 11 11	" " "	" " "	SIM " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05				" " "	" " "	SIM " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01	0.05 0.05 0.05 0.05 0.05 0.05	" " " "		" " "			SIM " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "			•		SIM " " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "			•		SIM " " " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ND ND ND ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "			•		SIM " " " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND ND ND ND ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "					SIM " " " " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND ND ND ND ND	0.02 0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05						SIM " " " " " " " "	
Acenaphthene Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluorene Iuorene ndeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND ND ND ND ND N	0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05						SIM " " " " " " " " "	

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMP 2-10

C5A3038-05 (Liquid, Sampled: 01/27/25 07:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	< Labora	tories, In	c Rivers	side				
Cations										
Calcium	400	3.3	10	mg/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Total Hardness	6400		10	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	3.3	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1400	3.2	9.7	"	1	5B04167	02/04/25	02/04/25	"	
Anions										
Bicarbonate	130	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"		
Total Alkalinity	130	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.2	10	mg/L	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Nitrate/Nitrite as N	0.042	0.0038	0.010	"	1	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2600	18	25	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	ND	0.1	0.1	mL/L	1	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	35000	500	500	mg/L	50	5A28220	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	16	0.5	0.5	"	1	5A30120	01/30/25	01/30/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	1.1		0.70	mg/L	1	5A28145	01/28/25	01/28/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.04	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.78	2.5	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.03	0.02	0.05	"	1	5A28192	01/28/25	01/28/25	SM 4500P B E	
Kjeldahl Nitrogen	ND	0.9	1.0	"	"	5A30111	01/31/25	02/03/25	EPA 351.2	N_RLm
Total Nitrogen (N)	ND	0.93	1.0	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMP 2-10

C5A3038-05 (Liquid, Sampled: 01/27/25 07:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	N_RLm
Aluminum-Dissolved	470	160	490	"	1	5B04167	02/04/25	02/04/25	"	J
Arsenic	7.2	7.1	20	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Arsenic-Dissolved	ND	7.1	20	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Cadmium	ND	0.99	4.0	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Total Chromium	ND	16	80	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Copper	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Iron	ND	260	500	"	10	5A28182	01/28/25	01/30/25	EPA 200.7	N_RLm
Iron-Dissolved	ND	250	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Mercury	ND	0.56	1.0	"	"	5A31080	01/31/25	02/03/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"			02/03/25	"	
Manganese	ND	13	40	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	N_RLm
Manganese-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Nickel	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Lead	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Lead-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Selenium	130	6.7	20	"	4	5A28160	01/28/25	01/30/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	ND	20	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Zinc-Dissolved	ND	20	40		1	5A29096	01/30/25	01/30/25		N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMP 2-10

C5A3038-05 (Liquid, Sampled: 01/27/25 07:30)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	ories, In	c Rivers	side				
Organochlorine Pesticides and	PCBs by EPA 80	000 Serie	5							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"	"	"	"	"		
Aroclor 1232	ND	0.81	1.0	"	"	"	"	"		
Aroclor 1242	ND	0.70	1.0	"	"	"	"	"		
Aroclor 1248	ND	0.48	1.0	"	"		"	"		
Aroclor 1254	ND	0.73	2.0	"	"		"	"		
Aroclor 1260	ND	0.15	1.0	"	"		"	"	"	
Surrogate: Decachlorobiphenyl			58 %	5-1	134	"	"	"	"	
•										
Semivolatile Organic Compound	ND	0.02	0.05	ug/L	1	5A31119	02/01/25	02/03/25	EPA 8270C	
Apparenthylang		0.02	0.05					"	SIM "	
	ND	0.02	0.05	"		"		"		
Anthracene	ND	0.01	0.05						"	
Anthracene Benzo(a)anthracene	ND ND	0.01 0.02	0.05 0.05	"	"	"	"	"	"	
Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND	0.01 0.02 0.02	0.05 0.05 0.05			"	"	"	"	
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND	0.01 0.02 0.02 0.02	0.05 0.05 0.05 0.05			11 11 11	" "	"		
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND ND	0.01 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	" " "		" " "		" " "		
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.01	0.05 0.05 0.05 0.05 0.05 0.05	" " "		" " "	• • • •			
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "						
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "						
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05							
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05							
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND	0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " " "			• • • • • • • •			
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	ND ND ND ND ND ND ND ND ND ND	0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05				•			
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND	0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " " "			• • • • • • • •			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 107B

C5A3038-06 (Liquid, Sampled: 01/27/25 08:33)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	400	3.3	10	mg/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Total Hardness	6400		10	"	"	"	n	"	SM 2340B/EPA 200.7	
Magnesium	1300	3.3	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1300	3.2	9.7	"	1	5B04167	02/04/25	02/04/25	"	
Anions										
Bicarbonate	120	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"		"		"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	120	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.2	10	mg/L	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLn
Nitrate/Nitrite as N	0.039	0.0038	0.010	"	1	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2700	18	25	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	ND	0.1	0.1	mL/L	1	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	34000	500	500	mg/L	50	5A28220	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	9	0.5	0.5	"	1	5A30120	01/30/25	01/30/25	SM 2540D	Nconf, NRPDo
Aggregate Organic Compounds										
Total Organic Carbon	1.2		0.70	mg/L	1	5A28145	01/28/25	01/28/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.04	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.78	2.5	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.04	0.02	0.05	"	1	5A28192	01/28/25	01/28/25	SM 4500P B E	
Kjeldahl Nitrogen	ND	0.9	1.0	"	"	5A30111	01/31/25	02/03/25	EPA 351.2	N_RLn
Total Nitrogen (N)	ND	0.93	1.0	"	"	[CALC]	"		Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 107B

C5A3038-06 (Liquid, Sampled: 01/27/25 08:33)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	N_RLm
Aluminum-Dissolved	240	160	490	"	1	5B04167	02/04/25	02/04/25	"	·
Arsenic	7.2	7.1	20	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Arsenic-Dissolved	7.2	7.1	20	"	1	5A29096	01/30/25	01/30/25	"	J, N_RLm
Cadmium	ND	0.99	4.0	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Total Chromium	ND	16	80	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Copper	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Iron	ND	260	500	"	10	5A28182	01/28/25	01/30/25	EPA 200.7	N_RLm
Iron-Dissolved	ND	250	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Mercury	ND	0.56	1.0	"	"	5A31080	01/31/25	02/03/25	SM 3112B	
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	02/03/25	"	
Manganese	ND	13	40	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	N_RLm
Manganese-Dissolved	ND	13	40		1	5A29096	01/30/25	01/30/25	"	N_RLm
Nickel	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Nickel-Dissolved	ND	13	40		1	5A29096	01/30/25	01/30/25	"	N_RLm
Lead	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Lead-Dissolved	ND	13	40		1	5A29096	01/30/25	01/30/25	"	N_RLm
Selenium	120	6.7	20	"	4	5A28160	01/28/25	01/30/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	ND	20	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Zinc-Dissolved	ND	20	40		1	5A29096	01/30/25	01/30/25		N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 107B

C5A3038-06 (Liquid, Sampled: 01/27/25 08:33)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	ories, In	c River	side				
Organochlorine Pesticides and	PCBs by EPA 80	000 Serie	S							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"	"	"	"	"		
Aroclor 1232	ND	0.81	1.0	"	"	"	"	"		
Aroclor 1242	ND	0.70	1.0	"	"	"	"	"		
Aroclor 1248	ND	0.48	1.0	"	"	"	"	"		
Aroclor 1254	ND	0.73	2.0	"	"	"	"	"		
Aroclor 1260	ND	0.15	1.0	"	"	"	"	"		
Surrogate: Decachlorobiphenyl			52 %	5-1	34	"	"	"	"	
Acenaphthene	ND	0.02	0.05	ua/l	1	5A31119	02/01/25	02/03/25	EPA 8270C	
Semivolatile Organic Compound										
Acenaphthene	ND	0.02	0.05	ug/L	1	5A31119	02/01/25	02/03/25	EPA 8270C	
				ug/L "	1	5A31119 "	02/01/25	02/03/25	EPA 8270C SIM	
Acenaphthylene	ND	0.02	0.05	-					SIM	
Acenaphthylene Anthracene	ND ND	0.02 0.01	0.05 0.05	"	"	"	n	n	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene	ND ND ND	0.02 0.01 0.02	0.05 0.05 0.05	"		"		"	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND	0.02 0.01 0.02 0.02	0.05 0.05 0.05 0.05	" "		" "	"	" " "	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND ND	0.02 0.01 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	" " "	" "	11 11 11	" " "	11 11 11	SIM " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05	" " "		" " "		" " "	SIM " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "		" " "		" " "	SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	11 11 11 11 11 11				" " " "	SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "					SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "					SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " " "		" " " " " " " " " " " " " " " " " " "	•	" " " " " "	SIM " " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05					" " " " " " "	SIM " " " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05				•		SIM " " " " " " " "	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 3-4

C5A3038-07 (Liquid, Sampled: 01/27/25 08:52)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	(Labora	tories, Inc	c Rivers	side				
Cations										
Calcium	380	3.3	10	mg/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Total Hardness	6100		10	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1200	3.3	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1200	3.2	9.7		1	5B04167	02/04/25	02/04/25	"	
Anions										
Bicarbonate	130	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	130	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.2	10	mg/L	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Nitrate/Nitrite as N	0.15	0.0038	0.010	"	1	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2500	18	25	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	ND	0.1	0.1	mL/L	1	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	32000	500	500	mg/L	50	5A28220	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	12	0.5	0.5	"	1	5A30120	01/30/25	01/30/25	SM 2540D	Nconf, NRPDo
Aggregate Organic Compounds										
Total Organic Carbon	2.0		0.70	mg/L	1	5A28145	01/29/25	01/29/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.06	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.78	2.5	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.07	0.02	0.05	"	1	5A28192	01/28/25	01/28/25	SM 4500P B E	
Kjeldahl Nitrogen	ND	0.9	1.0	"	"	5A30111	01/31/25	02/03/25	EPA 351.2	N_RLm
Total Nitrogen (N)	ND	0.93	1.0	"	"	[CALC]	"		Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 3-4

C5A3038-07 (Liquid, Sampled: 01/27/25 08:52)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	N_RLm
Aluminum-Dissolved	300	160	490	"	1	5B04167	02/04/25	02/04/25	"	J
Arsenic	7.7	7.1	20	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Arsenic-Dissolved	ND	7.1	20	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Cadmium	ND	0.99	4.0	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Total Chromium	ND	16	80	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Copper	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Iron	ND	260	500	"	10	5A28182	01/28/25	01/30/25	EPA 200.7	N_RLm
Iron-Dissolved	ND	250	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Mercury	ND	0.56	1.0	"	"	5A31081	01/31/25	02/03/25	SM 3112B	NLOhND
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	02/03/25	"	NLOhND
Manganese	ND	13	40	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	N_RLm
Manganese-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Nickel	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Lead	ND	13	40		4	5A28160	01/28/25	01/30/25	"	N_RLm
Lead-Dissolved	ND	13	40		1	5A29096	01/30/25	01/30/25	"	N_RLm
Selenium	110	6.7	20	"	4	5A28160	01/28/25	01/30/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	ND	20	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Zinc-Dissolved	ND	20	40		1	5A29096	01/30/25	01/30/25		N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 3-4

C5A3038-07 (Liquid, Sampled: 01/27/25 08:52)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c River	side				
Organochlorine Pesticides and I	PCBs by EPA 80	000 Serie	S							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"	"	"	"	"		
Aroclor 1232	ND	0.81	1.0	"	"	"	"	"	"	
Aroclor 1242	ND	0.70	1.0	"	"	"	"	"		
Aroclor 1248	ND	0.48	1.0	"	"	"		"		
Aroclor 1254	ND	0.73	2.0	"	"	"		"		
Aroclor 1260	ND	0.15	1.0	"	"	"	"	"		
Surrogate: Decachlorobiphenyl			64 %	5-1	34	"	"	"	"	
Semivolatile Organic Compound	ND	0.02	0.05			5404440	00/04/05	00/00/05	FRA 00700	
		0.02	0.05	ug/L	1	5A31119	02/01/25	02/03/25	EPA 8270C SIM	
Acenaphthylene	ND	0.02	0.05	ug/L "	1 "	5A31119 "	"	"	SIM	
Acenaphthylene				-					SIM	
Acenaphthylene Anthracene	ND	0.02	0.05	"	"	"	n	"	SIM "	
	ND ND	0.02 0.01	0.05 0.05	"		"	"	"	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND	0.02 0.01 0.02	0.05 0.05 0.05	"		" "	"	11 11 11	SIM " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND	0.02 0.01 0.02 0.02	0.05 0.05 0.05 0.05	" " "		11 11 11	11	11 11 11	SIM " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND ND	0.02 0.01 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	" " "			11 11 11 11	" " "	SIM " " "	
Acenaphthylene Anthracene Benzo(a)anthracene	ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05	" " " " "		" " " "	" " " " "	" " " "	SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "		" " " "	11 11 11 11 11 11 11	" " " "	SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "		" " " "	11 11 11 11 11 11 11 11 11	" " " "	SIM " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "			" " " " "		SIM " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " " "		" " " " " " "		" " " " " " " "	SIM " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05			" " " " " "		" " " " " " "	SIM " " " " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05			" " " " " " "		" " " " " " " "	SIM " " " " " " " " "	

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 108

C5A3038-08 (Liquid, Sampled: 01/27/25 08:15)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	(Labora	tories, Inc	c Rivers	side				
Cations										
Calcium	410	3.3	10	mg/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Total Hardness	6600		10	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	3.3	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1300	3.2	9.7	"	1	5B04167	02/04/25	02/04/25	"	
Anions										
Bicarbonate	130	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"			"	"	
Hydroxide	ND	5.0	5.0	"	"		"	"	"	
Total Alkalinity	130	5.0	5.0	"	"			"	"	
Nitrate as N	ND	6.2	10	mg/L	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Nitrate/Nitrite as N	0.038	0.0038	0.010	"	1	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2800	18	25	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	ND	0.1	0.1	mL/L	1	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	34000	500	500	mg/L	50	5A28220	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	5	0.5	0.5	"	1	5A30120	01/30/25	01/30/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	1.0		0.70	mg/L	1	5A28145	01/29/25	01/29/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.04	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.78	2.5	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.02	0.02	0.05	"	1	5A28192	01/28/25	01/28/25	SM 4500P B E	,
Kjeldahl Nitrogen	1.0	0.9	1.0	"	"	5A30111	01/31/25	02/03/25	EPA 351.2	N_RLm
Total Nitrogen (N)	1.0	0.93	1.0	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 108

C5A3038-08 (Liquid, Sampled: 01/27/25 08:15)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	ND	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	N_RLm
Aluminum-Dissolved	610	160	490	"	1	5B04167	02/04/25	02/04/25	"	
Arsenic	7.7	7.1	20	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Arsenic-Dissolved	ND	7.1	20	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Cadmium	ND	0.99	4.0	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Total Chromium	ND	16	80	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Copper	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Iron	ND	260	500	"	10	5A28182	01/28/25	01/30/25	EPA 200.7	N_RLm
Iron-Dissolved	ND	250	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Mercury	ND	0.56	1.0	"	"	5A31081	01/31/25	02/03/25	SM 3112B	NLOhND
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	02/03/25	"	NLOhND
Manganese	ND	13	40	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	N_RLm
Manganese-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Nickel	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Lead	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Lead-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Selenium	120	6.7	20	"	4	5A28160	01/28/25	01/30/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	ND	20	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Zinc-Dissolved	ND	20	40	"	1	5A29096	01/30/25	01/30/25	"	N RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 108

C5A3038-08 (Liquid, Sampled: 01/27/25 08:15)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	ories, In	c River	side				
Organochlorine Pesticides and	PCBs by EPA 80	000 Serie	5							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"	"	"	"	"		
Aroclor 1232	ND	0.81	1.0	"	"	"	"	"	"	
Aroclor 1242	ND	0.70	1.0	"	"	"	"	"		
Aroclor 1248	ND	0.48	1.0	"	"	"	"	"		
Aroclor 1254	ND	0.73	2.0	"	"	"	"	"		
Aroclor 1260	ND	0.15	1.0	"	"	"	"	"	"	
Surrogate: Decachlorobiphenyl			46 %	5-1	134	"	"	"	"	
Acenaphthene	ND	0.02	0.05	ua/L	1	5A31119	02/01/25	02/03/25	EPA 8270C	
Semivolatile Organic Compound	-									
Acenaphthene	ND	0.02	0.05	ug/L	1	5A31119	02/01/25	02/03/25	EPA 8270C	
				ug/L "	1	5A31119 "	02/01/25	02/03/25	EPA 8270C SIM "	
Acenaphthylene	ND	0.02	0.05	-					SIM	
Acenaphthylene Anthracene	ND ND	0.02 0.01	0.05 0.05	"	"	"	n	"	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene	ND ND ND	0.02 0.01 0.02	0.05 0.05 0.05	"		"	"	"	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND	0.02 0.01 0.02 0.02	0.05 0.05 0.05 0.05	" "		" "	"	11 11 11	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND ND	0.02 0.01 0.02	0.05 0.05 0.05	" " "		11 11 11	11 11 11	11 11 11	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND	0.02 0.01 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05	" " "		" " "	" " "	" " "	SIM " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	" " " "		" " "		" " "	SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05	11 11 11 11 11 11		" " " "		" " " "	SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "		" " " "			SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "					SIM " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " " "		" " " " " " " " " " " " " " " " " " "		" " " " " " " "	SIM " " " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05			" " " " " "		" " " " " " "	SIM " " " " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05					" " " " " " " "	SIM " " " " " " " " "	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 2-4

C5A3038-09 (Liquid, Sampled: 01/27/25 11:07)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	410	3.3	10	mg/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Total Hardness	6500		10	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	3.3	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1300	3.2	9.7	"	1	5B04167	02/04/25	02/04/25	"	
Anions										
Bicarbonate	140	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	140	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.2	10	mg/L	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Nitrate/Nitrite as N	0.058	0.0038	0.010	"	1	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2600	18	25	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	0.1	0.1	0.1	mL/L	1	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	33000	500	500	mg/L	50	5A28220	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	46	1	1	"	2	5A30120	01/30/25	01/30/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	2.2		0.70	mg/L	1	5A28145	01/29/25	01/29/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.06	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.78	2.5	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.13	0.02	0.05	"	1	5A28192	01/28/25	01/28/25	SM 4500P B E	
Kjeldahl Nitrogen	1.1	0.9	1.0	"	"	5A30111	01/31/25	02/03/25	EPA 351.2	
Total Nitrogen (N)	1.2	0.93	1.0	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 2-4

C5A3038-09 (Liquid, Sampled: 01/27/25 11:07)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	2100	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Aluminum-Dissolved	570	160	490	"	1	5B04167	02/04/25	02/04/25	"	
Arsenic	8.2	7.1	20	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Arsenic-Dissolved	ND	7.1	20		1	5A29096	01/30/25	01/30/25	"	N_RLm
Cadmium	ND	0.99	4.0	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Total Chromium	ND	16	80	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Copper	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Iron	3100	260	500		10	5A28182	01/28/25	01/30/25	EPA 200.7	
Iron-Dissolved	ND	250	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Mercury	ND	0.56	1.0	"	"	5A31081	01/31/25	02/03/25	SM 3112B	NLOhND
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	02/03/25	"	NLOhND
Manganese	140	13	40	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	
Manganese-Dissolved	48	13	40	"	1	5A29096	01/30/25	01/30/25	"	
Nickel	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Lead	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Lead-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Selenium	120	6.7	20	"	4	5A28160	01/28/25	01/30/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	ND	20	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Zinc-Dissolved	ND	20	40	"	1	5A29096	01/30/25	01/30/25	"	N RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 2-4

C5A3038-09 (Liquid, Sampled: 01/27/25 11:07)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	ories, In	c River	side				
Organochlorine Pesticides and	PCBs by EPA 80	000 Serie	S							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"	"	"	"	"		
Aroclor 1232	ND	0.81	1.0	"	"	"	"	"		
Aroclor 1242	ND	0.70	1.0	"	"	"		"		
Aroclor 1248	ND	0.48	1.0	"	"	"		"		
Aroclor 1254	ND	0.73	2.0	"	"			"		
Aroclor 1260	ND	0.15	1.0	"	"	"		"	"	
Surrogate: Decachlorobiphenyl			30 %	5-1	134	"	п	"	"	
Semivolatile Organic Compound	ND	0.02	0.05	ug/L	1	5A31119	02/01/25	02/03/25	EPA 8270C	
									SIM	
Acenaphthylene	ND	0.02	0.05	"	"			"	SIM "	
Acenaphthylene Anthracene	ND ND	0.02 0.01	0.05 0.05	"	"	"	"	"		
									"	
Anthracene	ND	0.01	0.05	"		"	"	n	"	
Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND	0.01 0.02	0.05 0.05	"	"	"	"	"	"	
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND	0.01 0.02 0.02	0.05 0.05 0.05		"	"	"	11 11 11		
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND ND	0.01 0.02 0.02 0.02	0.05 0.05 0.05 0.05	" " "		" " "	" " "	 		
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND	0.01 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	" " "		" " "	" " "	" " "		
Anthracene Benzo(a)anthracene	ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.01	0.05 0.05 0.05 0.05 0.05 0.05	" " "			" " " "	" " "		
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "		" " " "				
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "						
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "						
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05							
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene ndeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND	0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "						

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 1-18

C5A3038-10 (Liquid, Sampled: 01/27/25 10:32)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	(Labora	tories, Inc	c Rivers	side				
Cations										
Calcium	410	3.3	10	mg/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Total Hardness	6600		10	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1300	3.3	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1300	3.2	9.7	"	1	5B04167	02/04/25	02/04/25	"	
Anions										
Bicarbonate	130	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"		"	"	"	
Hydroxide	ND	5.0	5.0	"	"		"	"	"	
Total Alkalinity	130	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.2	10	mg/L	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Nitrate/Nitrite as N	0.014	0.0038	0.010	"	1	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2700	18	25	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	ND	0.1	0.1	mL/L	1	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	35000	500	500	mg/L	50	5A28220	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	140	2	2	"	5	5A30120	01/30/25	01/30/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	2.4		0.70	mg/L	1	5A28145	01/29/25	01/29/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.07	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.78	2.5	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.26	0.02	0.05	"	1	5A28192	01/28/25	01/28/25	SM 4500P B E	
Kjeldahl Nitrogen	2.1	0.9	1.0	"	"	5A30111	01/31/25	02/03/25	EPA 351.2	
Total Nitrogen (N)	2.2	0.93	1.0	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 1-18

C5A3038-10 (Liquid, Sampled: 01/27/25 10:32)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	5200	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Aluminum-Dissolved	590	160	490	"	1	5B04167	02/04/25	02/04/25	"	
Arsenic	9.6	7.1	20	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Arsenic-Dissolved	ND	7.1	20	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Cadmium	ND	0.99	4.0	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Total Chromium	ND	16	80	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Copper	22	13	40	"	4	5A28160	01/28/25	01/30/25	"	J, N_RLm
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Iron	6900	260	500	"	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Iron-Dissolved	ND	250	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Mercury	ND	0.56	1.0	"	"	5A31081	01/31/25	02/03/25	SM 3112B	NLOhND
Mercury-Dissolved	ND	0.56	1.0	"	"	"	"	02/03/25	"	NLOhND
Manganese	220	13	40	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	
Manganese-Dissolved	36	13	40	"	1	5A29096	01/30/25	01/30/25	"	J, N_RLm
Nickel	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Nickel-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Lead	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Lead-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Selenium	120	6.7	20	"	4	5A28160	01/28/25	01/30/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	28	20	40	"	4	5A28160	01/28/25	01/30/25	"	J, N_RLm
Zinc-Dissolved	ND	20	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 1-18

C5A3038-10 (Liquid, Sampled: 01/27/25 10:32)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	ories, In	c Rivers	side				
Organochlorine Pesticides and	PCBs by EPA 80	000 Serie	5							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"		"	"	"		
Aroclor 1232	ND	0.81	1.0	"		"	"	"		
Aroclor 1242	ND	0.70	1.0	"		"		"		
Aroclor 1248	ND	0.48	1.0	"		"		"		
Aroclor 1254	ND	0.73	2.0	"		"		"		
Aroclor 1260	ND	0.15	1.0	"		"	"	"		
Surrogate: Decachlorobiphenyl			17 %	5-1	34	"	"	"	"	
loonaphalone		0.02	0.05	ug/L	1	5A31119	02/01/25	02/03/25	EPA 8270C	
Semivolatile Organic Compound	ND	0.02								
Acenaphthene		0.02	0.00	ug/L	1	JAJIIIJ	02/01/25	02/03/23		
	ND			"		"	"	"	SIM	
Acenaphthylene	ND ND	0.02	0.05	-			"		SIM	
Acenaphthylene Anthracene	ND	0.02 0.01	0.05 0.05		"	"	"	"	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene	ND ND	0.02 0.01 0.02	0.05 0.05 0.05	"		"		"	SIM "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND	0.02 0.01 0.02 0.02	0.05 0.05 0.05 0.05	"		" "	"	11 11 11	SIM " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND	0.02 0.01 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	"	"	11 11 11	11 11 11	" " "	SIM " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND	0.02 0.01 0.02 0.02	0.05 0.05 0.05 0.05			" " "	" " "	" " "	SIM " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05	11 11 11 11 11 11		" " "		" " " "	SIM " " "	
Acenaphthylene Anthracene	ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05	11 11 11 11 11 11		" " " "		" " " "	SIM " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " " " " " " " " " " " " " " " "		" " " "		" " " "	SIM " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05						SIM " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05			" " " " "		" " " " " " "	SIM " " " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene ndeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05			" " " " " "		" " " " " " "	SIM " " " " " " " " "	
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND ND ND ND ND ND ND ND ND	0.02 0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05					" " " " " " " "	SIM " " " " " " " " "	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 1-14

C5A3038-11 (Liquid, Sampled: 01/27/25 09:13)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcocl	(Labora	tories, Ind	c Rivers	side				
Cations										
Magnesium-Dissolved	1400	3.2	9.7	mg/L	1	5B04167	02/04/25	02/04/25	EPA 200.7	
Anions										
Bicarbonate	130	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	130	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.2	10	mg/L	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Nitrate/Nitrite as N	0.024	0.0038	0.010	"	1	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2700	18	25	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	ND	0.1	0.1	mL/L	1	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	34000	500	500	mg/L	50	5A28220	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	37	1	1	"	2	5A30120	01/30/25	01/30/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	1.7		0.70	mg/L	1	5A28145	01/29/25	01/29/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.04	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.78	2.5	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.19	0.02	0.05	u	1	5A28192	01/28/25	01/28/25	SM 4500P B E	
Kjeldahl Nitrogen	1.0	0.9	1.0	"	"	5A30111	01/31/25	02/03/25	EPA 351.2	
Total Nitrogen (N)	1.1	0.93	1.0	"		[CALC]			Calculation	

Babcock Laboratories, Inc. - Riverside

Γ

Babcock Laboratories, Inc. - Riverside 6100 Quail Valley Court Riverside, CA 92507-0704 (951) 653-3351

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 1-14

C5A3038-11 (Liquid, Sampled: 01/27/25 09:13)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	ories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	1500	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Aluminum-Dissolved	270	160	490	"	1	5B04167	02/04/25	02/04/25	"	
Arsenic	ND	8.8	25	"	5	5A30078	01/30/25	01/31/25	EPA 200.8	N_RLr
Arsenic-Dissolved	ND	7.1	20	"	1	5A29096	01/30/25	01/30/25	"	N_RLr
Cadmium	ND	1.2	5.0	"	5	5A30078	01/30/25	01/31/25	"	N_RLr
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLr
Total Chromium	ND	20	100	"	5	5A30078	01/30/25	01/31/25	"	N_RLr
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLr
Copper	ND	17	50	"	5	5A30078	01/30/25	01/31/25	"	N_RLr
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLr
Iron-Dissolved	ND	250	490	"	"	5B04167	02/04/25	02/04/25	EPA 200.7	N_RLr
Mercury	ND	0.56	1.0	"	"	5A31081	01/31/25	02/03/25	SM 3112B	NLOhN
Mercury-Dissolved	ND	0.56	1.0	"	"		"	02/03/25	"	NLOhN
Manganese	39	17	50	"	5	5A30078	01/30/25	01/31/25	EPA 200.8	J, N_RLn
Manganese-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLr
Nickel	ND	17	50	"	5	5A30078	01/30/25	01/31/25	"	N_RLr
Nickel-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLr
Lead	ND	17	50	"	5	5A30078	01/30/25	01/31/25	"	N_RLr
Lead-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLr
Selenium	180	8.4	25	"	5	5A30078	01/30/25	01/31/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	ND	25	50	"	5	5A30078	01/30/25	01/31/25	"	N_RLr
Zinc-Dissolved	ND	20	40		1	5A29096	01/30/25	01/30/25	"	N_RLr
Organochlorine Pesticides and	PCBs by EPA 8	000 Serie	s							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"	"		"		"	
Aroclor 1232	ND	0.81	1.0		"	"	"	"	"	
Aroclor 1242	ND	0.70	1.0	"	"		"		"	
Aroclor 1248	ND	0.48	1.0	"	"		"		"	
Aroclor 1254	ND	0.73	2.0	"			"		"	
Aroclor 1260	ND	0.15	1.0		"	"	"		"	
Surrogate: Decachlorobiphenyl			36 %	5-1	34	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

Г

Babcock Laboratories, Inc. - Riverside 6100 Quail Valley Court Riverside, CA 92507-0704 (951) 653-3351

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

SMB 1-14

C5A3038-11 (Liquid, Sampled: 01/27/25 09:13)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c Rivers	side				
Semivolatile Organic Compou	nds by EPA 8270	C SIM								
Acenaphthene	ND	0.02	0.05	ug/L	1	5A31119	02/01/25	02/04/25	EPA 8270C SIM	
Acenaphthylene	ND	0.02	0.05	"	"	"	"	"		
Anthracene	ND	0.01	0.05	"	"	"	"	"		
Benzo(a)anthracene	ND	0.02	0.05	"	"	"	"	"		
Benzo(a)pyrene	ND	0.02	0.05	"	"	"	"	"		
Benzo(b)fluoranthene	ND	0.02	0.05		"	"	"	"	"	
Benzo(ghi)perylene	ND	0.01	0.05	"	"	"	"	"		
Benzo(k)fluoranthene	ND	0.02	0.05	"	"	"	"	"		
Chrysene	ND	0.03	0.05	"	"	"	"	"		
Dibenzo(a,h)anthracene	ND	0.02	0.05	"	"	"	"	"		
Fluoranthene	ND	0.02	0.05	"	"	"	"	"		
Fluorene	ND	0.02	0.05	"	"	"	"	"		
Indeno(1,2,3-cd)pyrene	ND	0.02	0.05		"	"	"	"	"	
Naphthalene	ND	0.02	0.05	"		"	"	"		
Phenanthrene	ND	0.02	0.05	"		"	"	"		
Pyrene	ND	0.01	0.05		"	"	"	"		
Surrogate: Anthracene-d10			22 %	10-	162	"	"	"	"	

Babcock Laboratories, Inc. - Riverside

Г

Babcock Laboratories, Inc. - Riverside 6100 Quail Valley Court Riverside, CA 92507-0704 (951) 653-3351

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 001

C5A3038-12 (Liquid, Sampled: 01/27/25 09:46)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	(Labora	tories, Ind	c Rivers	side				
Cations										
Calcium	420	3.3	10	mg/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Total Hardness	6700		10	"	"	"	"	"	SM 2340B/EPA 200.7	
Magnesium	1400	3.3	10	"	"	"	"	"	EPA 200.7	
Magnesium-Dissolved	1300	3.2	9.7	"	1	5B04167	02/04/25	02/04/25	"	
Anions										
Bicarbonate	130	5.0	5.0	mg/L as CaCO3	1	5B03169	02/03/25	02/03/25	SM 2320B	
Carbonate	ND	5.0	5.0	"	"	"	"	"	"	
Hydroxide	ND	5.0	5.0	"	"	"	"	"	"	
Total Alkalinity	130	5.0	5.0	"	"	"	"	"	"	
Nitrate as N	ND	6.2	10	mg/L	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Nitrate/Nitrite as N	0.019	0.0038	0.010	"	1	5A29161	01/29/25	01/29/25	EPA 353.2	
Sulfate	2700	18	25	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	
Solids										
Settleable Solids	ND	0.1	0.1	mL/L	1	5A28165	01/28/25	01/28/25	SM 2540F	
Total Dissolved Solids	35000	500	500	mg/L	50	5A28220	01/29/25	01/29/25	SM 2540C	
Total Suspended Solids	17	0.5	0.5	"	1	5A30120	01/30/25	01/30/25	SM 2540D	
Aggregate Organic Compounds										
Total Organic Carbon	0.99		0.70	mg/L	1	5A28145	01/29/25	01/29/25	SM 5310B	
Nutrients										
Ammonia-Nitrogen	0.03	0.005	0.01	mg/L	1	5B03202	02/03/25	02/03/25	SM4500NH3 H G	
Ortho Phosphate Phosphorus	ND	0.78	2.5	"	50	5A27217	01/28/25	01/28/25	EPA 300.0	N_RLm
Phosphorus, Total as P	0.05	0.02	0.05	"	1	5A28192	01/28/25	01/28/25	SM 4500P B E	
Kjeldahl Nitrogen	ND	0.09	0.1	"	"	5A30113	01/31/25	02/03/25	EPA 351.2	N_RLm
Total Nitrogen (N)	ND	0.096	0.11	"	"	[CALC]	"	"	Calculation	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 001

C5A3038-12 (Liquid, Sampled: 01/27/25 09:46)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Labora	tories, In	c Rivers	side				
Metals and Metalloids										
Aluminum	420	170	500	ug/L	10	5A28182	01/28/25	01/30/25	EPA 200.7	,
Aluminum-Dissolved	360	160	490	"	1	5B04167	02/04/25	02/04/25	"	
Arsenic	8.4	7.1	20		4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Arsenic-Dissolved	7.6	7.1	20		1	5A29096	01/30/25	01/30/25	"	J, N_RLm
Cadmium	ND	0.99	4.0	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Cadmium-Dissolved	ND	0.99	8.0	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Total Chromium	ND	16	80	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Chromium-Dissolved	ND	16	80	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Copper	22	13	40	"	4	5A28160	01/28/25	01/30/25	"	J, N_RLm
Copper-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Iron	500	260	500	"	10	5A28182	01/28/25	01/30/25	EPA 200.7	
Iron-Dissolved	ND	250	490	"	1	5B04167	02/04/25	02/04/25	"	N_RLm
Mercury	ND	0.56	1.0			5A31081	01/31/25	02/03/25	SM 3112B	NLOhNE
Mercury-Dissolved	ND	0.56	1.0			"		02/03/25	"	NLOhNE
Manganese	19	13	40	"	4	5A28160	01/28/25	01/30/25	EPA 200.8	J, N_RLm
Manganese-Dissolved	ND	13	40		1	5A29096	01/30/25	01/30/25	"	N_RLm
Nickel	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Nickel-Dissolved	ND	13	40		1	5A29096	01/30/25	01/30/25	"	N_RLm
Lead	ND	13	40	"	4	5A28160	01/28/25	01/30/25	"	N_RLm
Lead-Dissolved	ND	13	40	"	1	5A29096	01/30/25	01/30/25	"	N_RLm
Selenium	110	6.7	20	"	4	5A28160	01/28/25	01/30/25	"	
Selenium-Dissolved	110	6.7	20	"	1	5A29096	01/30/25	01/30/25	"	
Zinc	23	20	40	"	4	5A28160	01/28/25	01/30/25	"	J, N_RLm
Zinc-Dissolved	ND	20	40		1	5A29096	01/30/25	01/30/25		N_RLm

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

DPH 001

C5A3038-12 (Liquid, Sampled: 01/27/25 09:46)

Analyte	Result	MDL	RL	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Babcock	Laborat	tories, In	c River	side				
Organochlorine Pesticides and I	PCBs by EPA 80	000 Serie	S							
Aroclor 1016	ND	0.22	1.0	ug/L	1	5A30099	01/30/25	02/05/25	EPA 8082	
Aroclor 1221	ND	0.30	1.0	"	"		"	"		
Aroclor 1232	ND	0.81	1.0	"	"	"	"	"	•	
Aroclor 1242	ND	0.70	1.0	"	"		"	"		
Aroclor 1248	ND	0.48	1.0	"	"		"	"		
Aroclor 1254	ND	0.73	2.0	"	"		"	"	"	
Aroclor 1260	ND	0.15	1.0	"	"		"	"	"	
Surrogate: Decachlorobiphenyl			53 %	5-1	134	"	"	"	"	
Acenaphthene	ND	0.02	0.05	ug/L	1	5A31119	02/01/25	02/04/25	EPA 8270C	
		0.00	0.05						SIM	
· •	ND	0.02	0.05		"	"	"	"	"	
Acenaphthylene Anthracene	ND	0.01	0.05	"			"	n	"	
Anthracene Benzo(a)anthracene	ND ND	0.01 0.02	0.05 0.05	"	"	"	"	"	"	
Anthracene Benzo(a)anthracene Benzo(a)pyrene	ND ND ND	0.01 0.02 0.02	0.05 0.05 0.05	"	11 11	"	11 11 11	"	"	
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene	ND ND ND ND	0.01 0.02 0.02 0.02	0.05 0.05 0.05 0.05	""		" " "	11 11 11			
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene	ND ND ND ND	0.01 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	" " "		" " "	" " "	" " "		
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene	ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.01	0.05 0.05 0.05 0.05 0.05 0.05	 		" " "				
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene	ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " "			" " " "			
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene	ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.03	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "						
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene	ND ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05				• • • • • • • • • • • • • • • • • • • •			
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene	ND ND ND ND ND ND ND ND	0.01 0.02 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05							
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND	0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "						
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene Naphthalene	ND ND ND ND ND ND ND ND ND ND	0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05							
Anthracene Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(ghi)perylene Benzo(k)fluoranthene Chrysene Dibenzo(a,h)anthracene Fluoranthene Fluorene Indeno(1,2,3-cd)pyrene	ND ND ND ND ND ND ND ND ND	0.01 0.02 0.02 0.01 0.02 0.03 0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05	" " " " "						

State Water Resources Control Board - Region 4320 West Fourth Street, Suite 200ProjeLos Angeles CA, 90013Project

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Cations - Quality Control

Babcock Laboratories, Inc. - Riverside

Notest in the intermediate	Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Calcium ND 0.33 1.0 mg/L Magnesium ND 0.33 1.0 mg/L Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 17.2 0.33 1.0 mg/L 17.0 101 85-115 Magnesium 17.3 0.33 1.0 " 17.0 102 85-115 Duplicate (5A28182-DUP1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 20 Calcium 6.56 3.3 10 " 6.68 2 20 20 Magnesium ND 3.3 10 " ND 2.3 20 Calcium 6.56 3.3 10 " ND 20 0.3 20 Galcium 0.56 3.3 10 " ND 20 20 20 Magnesium ND 3.3 10 " ND 20 20 Magnesium ND 3.3 10 mg/L 17.0 6.68 103 70-130 Magnesium 20.2 3.3	-					20101		,				
Magnesium ND 0.33 1.0 " LCS (5A28182-BS1) Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 17.2 0.33 1.0 mg/L 17.0 101 85-115 Magnesium 17.3 0.33 1.0 " 17.0 102 85-115 Duplicate (5A28182-DUP1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Total Hardness 29.1 10 mg/L 29.0 0.3 20 Calcium 6.56 3.3 10 " 6.68 2 20 . Magnesium ND 3.3 10 " ND . 20 Calcium 6.56 3.3 10 " ND . 20 Magnesium ND 3.3 10 " ND . 20 Calcium 6.56 3.3 10 mg/L 17.0 6.68 103 70-130 Magnesium 20.	Blank (5A28182-BLK1)					Prepared	: 01/28/25	Analyzed	1: 01/30/25			
Magnesium ND 0.33 1.0 LCS (5A28182-BS1) Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 17.2 0.33 1.0 mg/L 17.0 101 85-115 Magnesium 17.3 0.33 1.0 " 17.0 102 85-115 Duplicate (5A28182-DUP1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 0.3 20 Calcium 6.56 3.3 10 " 6.68 2 20 . Magnesium ND 3.3 10 " ND . 20 . Calcium 6.56 3.3 10 " 6.68 2 20 . Magnesium ND 3.3 10 " ND . 20 . Magnesium ND 3.3 10 " Prepared: 01/28/25 Analyzed: 01/30/25 . . Calcium 24.2 3.3 10 mg/L 17.0 ND 119 70-130 . Magnesium 20.2 3.3 <td>Calcium</td> <td>ND</td> <td>0.33</td> <td>1.0</td> <td>mg/L</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Calcium	ND	0.33	1.0	mg/L							
Calcium 17.2 0.33 1.0 mg/L 17.0 101 85-115 Magnesium 17.3 0.33 1.0 " 17.0 102 85-115 Duplicate (5A28182-DUP1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Total Hardness 29.1 10 mg/L 29.0 0.3 20 Calcium 6.56 3.3 10 " 6.68 2 20 . Magnesium ND 3.3 10 " 0.688 2 20 . Magnesium ND 3.3 10 " ND 20 0.3 20 Magnesium ND 3.3 10 " ND 20 20 . Magnesium 20.2 3.3 10 mg/L 17.0 6.68 103 70-130 Magnesium 20.2 3.3 10 mg/L 17.0 ND 119 70-130 Magnesium 20.2 3.3 10 " 17.0 ND 119 70-130	Magnesium	ND	0.33	1.0	"							
Magnesium 17.3 0.33 1.0 " 17.0 102 85-115 Duplicate (5A28182-DUP1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Total Hardness 29.1 10 mg/L 29.0 0.3 20 Calcium 6.56 3.3 10 " 6.68 2 20 Magnesium ND 3.3 10 " Prepared: 01/28/25 Analyzed: 01/30/25 Magnesium ND 3.3 10 " Prepared: 01/28/25 Analyzed: 01/30/25 Matrix Spike (5A28182-MS1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 24.2 3.3 10 mg/L 17.0 6.68 103 70-130 Magnesium 20.2 3.3 10 " 17.0 ND 119 70-130 Magnesium 20.2 3.3 10 " 17.0 6.68 103 70-130 20 Matrix Spike Dup (5A28182-MSD1) Source: C5A2629-01 Prepared: 01/28/25 An	LCS (5A28182-BS1)					Prepared:	01/28/25	Analyzed	1: 01/30/25			
Magnesium 17.3 0.33 1.0 17.0 102 85-115 Duplicate (5A28182-DUP1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Total Hardness 29.1 10 mg/L 29.0 0.3 20 Calcium 6.56 3.3 10 " 6.68 2 20 7 Magnesium ND 3.3 10 " ND ND 20 Matrix Spike (5A28182-MS1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 20 Magnesium 20.2 3.3 10 "g/L 17.0 6.68 103 70-130 Magnesium 20.2 3.3 10 "g/L 17.0 6.68 103 70-130 Magnesium 20.2 3.3 10 "g/L 17.0 ND 119 70-130 Matrix Spike Dup (5A28182-MSD1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 20 Calcium 24.7 3.3 10 mg/L 17.0 6.68 106 70-130	Calcium	17.2	0.33	1.0	mg/L	17.0		101	85-115			
Total Hardness 29.1 10 mg/L 29.0 0.3 20 Calcium 6.56 3.3 10 " 6.68 2 20 . Magnesium ND 3.3 10 " ND 20 . Matrix Spike (5A28182-MS1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 . Calcium 24.2 3.3 10 mg/L 17.0 6.68 103 70-130 Magnesium 20.2 3.3 10 " 17.0 ND 119 70-130 Magnesium 20.2 3.3 10 " 17.0 ND 119 70-130 Matrix Spike Dup (5A28182-MSD1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 24.7 3.3 10 mg/L 17.0 6.68 106 70-130 2 20	Magnesium	17.3	0.33	1.0	"	17.0		102	85-115			
Calcium 6.56 3.3 10 " 6.68 2 20 Magnesium ND 3.3 10 " ND ND 20 Matrix Spike (5A28182-MS1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 20 Magnesium 20.2 3.3 10 mg/L 17.0 6.68 103 70-130 Magnesium 20.2 3.3 10 " 17.0 ND 119 70-130 Matrix Spike Dup (5A28182-MSD1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 20.2 3.3 10 mg/L 17.0 6.68 103 70-130 20 Calcium 20.2 3.3 10 " Prepared: 01/28/25 Analyzed: 01/30/25 20 Calcium 24.7 3.3 10 mg/L 17.0 6.68 106 70-130 2 20	Duplicate (5A28182-DUP1)		Source: (C5A262	9-01	Prepared:	01/28/25	Analyzed	1: 01/30/25			
Magnesium ND 3.3 10 " ND 20 Matrix Spike (5A28182-MS1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Output Analyzed: 01/30/25 Analyzed: 01/30/25 Calcium 24.2 3.3 10 mg/L 17.0 6.68 103 70-130 To analyzed: 01/30/25 Matrix Spike Dup (5A28182-MSD1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 To analyzed: 01/30/25 To analyzed: 01/30/25 Calcium 24.7 3.3 10 mg/L 17.0 6.68 106 70-130 Z 20	Total Hardness	29.1		10	mg/L		29.0			0.3	20	
Magnesium ND 3.3 10 ND ND 20 Matrix Spike (5A28182-MS1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 24.2 3.3 10 mg/L 17.0 6.68 103 70-130 Magnesium 20.2 3.3 10 " 17.0 ND 119 70-130 Matrix Spike Dup (5A28182-MSD1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 20.2 20.2 Calcium 24.7 3.3 10 mg/L 17.0 6.68 106 70-130 20.2 Calcium 24.7 3.3 10 mg/L 17.0 6.68 106 70-130 2 20	Calcium	6.56	3.3	10	"		6.68			2	20	,
Calcium 24.2 3.3 10 mg/L 17.0 6.68 103 70-130 Magnesium 20.2 3.3 10 " 17.0 ND 119 70-130 Matrix Spike Dup (5A28182-MSD1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 24.7 3.3 10 mg/L 17.0 6.68 106 70-130	Magnesium	ND	3.3	10	"		ND				20	
Magnesium 20.2 3.3 10 " 17.0 ND 119 70-130 Matrix Spike Dup (5A28182-MSD1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 24.7 3.3 10 mg/L 17.0 6.68 106 70-130 2 20	Matrix Spike (5A28182-MS1)		Source: (C5A262	9-01	Prepared:	01/28/25	Analyzed	1: 01/30/25			
Matrix Spike Dup (5A28182-MSD1) Source: C5A2629-01 Prepared: 01/28/25 Analyzed: 01/30/25 Calcium 24.7 3.3 10 mg/L 17.0 6.68 106 70-130 2 20	Calcium	24.2	3.3	10	mg/L	17.0	6.68	103	70-130			
Calcium 24.7 3.3 10 mg/L 17.0 6.68 106 70-130 2 20	Magnesium	20.2	3.3	10	"	17.0	ND	119	70-130			
	Matrix Spike Dup (5A28182-MSD1)		Source: (C5A262	9-01	Prepared:	01/28/25	Analyzed	1: 01/30/25			
Magnesium 20.6 3.3 10 " 17.0 ND 121 70-130 2 20	Calcium	24.7	3.3	10	mg/L	17.0	6.68	106	70-130	2	20	
	Magnesium	20.6	3.3	10	"	17.0	ND	121	70-130	2	20	

Blank (5B04167-BLK1)					Prepared & An	alyzed: 02/04/2	5	
Magnesium-Dissolved	ND	0.33	1.0	mg/L				
LCS (5B04167-BS1)					Prepared & An	alyzed: 02/04/2	5	
Magnesium-Dissolved	16.6	0.33	1.0	ma/L	16.4	101	85-115	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4Project:RWB4_WildFireResponse_2025320 West Fourth Street, Suite 200Project Number:Wildfire Response 2025Reported:Los Angeles CA, 90013Project Manager:John Salguero02/07/25 16:41

Cations - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5B04167, Prep Method: 200.7/	No Digest,	Analyst:	MGA								
		_			Deserved	0 4	-1- 00/04/0	r			
Matrix Spike (5B04167-MS1)		Source: C	C5A303	8-01	Prepared	& Analyze	d: 02/04/2	5			
Matrix Spike (5B04167-MS1) Magnesium-Dissolved	1430	Source: C 3.4	2 5A303 10	8-01 mg/L	Prepared 164	& Analyze 1070	d: 02/04/2 219	5 70-130			QMdil
· · · · ·	1430		10	mg/L	164	,	219	70-130			QMdil

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Anions - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A27217, Prep Method: N/A, A											
Blank (5A27217-BLK1)					Prepared	& Analyzed	d: 01/28/2	25			
Sulfate	ND	0.36	0.50	mg/L							
Nitrate as N	ND	0.12	0.20	"							
LCS (5A27217-BS1)					Prepared	& Analyzed	d: 01/28/2	25			
Sulfate	25.1	0.36	0.50	mg/L	25.0		100	90-110			
Nitrate as N	5.50	0.12	0.20		5.65		97	90-110			
Duplicate (5A27217-DUP1)		Source:	C5A303	8-01	Prepared	& Analyzed	d: 01/28/2	25			
Sulfate	2680	18	25	mg/L		2750			3	25	
Nitrate as N	6.73	6.2	10	"		12.2			58	20	QRPDI,
Matrix Spike (5A27217-MS1)		Source:	C5A303	8-01	Prepared	& Analyzed	d: 01/28/2	25			
Sulfate	3940	19	26	mg/L	1250	2750	95	80-120			
Nitrate as N	270	6.6	10	"	282	12.2	91	80-120			
Matrix Spike (5A27217-MS2)		Source:	C5A260	1-12RE2	Prepared	& Analyzed	d: 01/28/2	25			
Sulfate	5190	38	52	mg/L	2500	2620	103	80-120			
Nitrate as N	539	13	21	"	565	14.8	93	80-120			
Matrix Spike Dup (5A27217-MSD1)		Source:	C5A303	8-01	Prepared	& Analyzed	d: 01/28/2	25			
Sulfate	3960	19	26	mg/L	1250	2750	96	80-120	0.5	25	
Nitrate as N	270	6.6	10		282	12.2	91	80-120	0.05	25	

Batch 5A29122, Prep Method: N/A, Analyst: GMB

Blank (5A29122-BLK1)					Prepared & Analyzed: 01/31/25
Total Alkalinity	ND	5.0	5.0	mg/L as CaCO3	
Hydroxide	ND	5.0	5.0	"	
Carbonate	ND	5.0	5.0	"	
Bicarbonate	ND	5.0	5.0	"	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4320 West Fourth Street, Suite 200ProjectLos Angeles CA, 90013Project

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Anions - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5A29122, Prep Method: N/A, A	Analyst: GM	В									
LCS (5A29122-BS3)					Prepared	& Analyze	d: 01/31/2	25			
Total Alkalinity	1130	5.0	5.0	mg/L as CaCO3	1250		91	90-110			
Carbonate	1040	5.0	5.0	"	1250		83	90-110			QLou
Duplicate (5A29122-DUP1)		Source:	C5A262	9-01RE1	Prepared	& Analyze	d: 01/31/2	25			
Total Alkalinity	48.0	5.0	5.0	mg/L as CaCO3		46.8			3	25	
Hydroxide	ND	5.0	5.0	"		ND				25	
Carbonate	ND	5.0	5.0	"		ND				25	
Bicarbonate	48.0	5.0	5.0			46.8			3	25	
Duplicate (5A29122-DUP2)		Source:	C5A303	88-01	Prepared	& Analyze	d: 01/31/2	25			
Total Alkalinity	117	5.0	5.0	mg/L as CaCO3		121			4	25	
Hydroxide	ND	5.0	5.0	"		ND				25	
Carbonate	ND	5.0	5.0	"		ND				25	
Bicarbonate	117	5.0	5.0	"		121			4	25	
Matrix Spike (5A29122-MS1)		Source:	C5A303	88-01	Prepared	& Analyze	d: 01/31/2	25			
Total Alkalinity	477	5.0	5.0	mg/L as CaCO3	1250	121	28	80-120			QFpas, QMou
Matrix Spike Dup (5A29122-MSD1)		Source:	C5A303	88-01	Prepared	& Analyze	d: 01/31/2	25			
Total Alkalinity	477	5.0	5.0	mg/L as CaCO3	1250	121	28	80-120	0.02	25	QFpas, QMou
Batch 5A29161, Prep Method: N/A, /	Analyst: TRS	6									
Blank (5A29161-BLK1)					Prepared	& Analyze	d: 01/29/2	25			
Nitrate/Nitrite as N	ND	0.0038	0.010	mg/L	-	-					
LCS (5A29161-BS1)					Prepared	& Analyze	d: 01/29/2	25			

 LCS (5A29161-BS1)
 Prepared & Analyzed: 0.1/29/25

 Nitrate/Nitrite as N
 0.502
 0.0038
 0.010
 mg/L
 0.500
 100
 90-110

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Anions - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Denvill	MDL	RL	Units	Spike	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Analyte	Result	IVIDL	RL	Units	Level	Result	70REU		RPD		notes
Batch 5A29161, Prep Method: N/A, A	Analyst: TR	s									
Duplicate (5A29161-DUP1)		Source:	C5A303	8-01	Prepared	& Analyze	d: 01/29/2	5			
Nitrate/Nitrite as N	0.0320	0.0038	0.010	mg/L		0.0310			3	20	
Matrix Spike (5A29161-MS1)		Source:	C5A303	8-01	Prepared	& Analyze	d: 01/29/2	5			
Nitrate/Nitrite as N	0.487	0.0038	0.010	mg/L	0.500	0.0310	91	90-110			
Matrix Spike (5A29161-MS2)		Source:	<u>C</u> 5A303	8-03	Prepared	& Analyze	<u>d:</u> 01/29/2	5			_
Nitrate/Nitrite as N	0.490	0.0038	0.010	mg/L	0.500	0.0370	91	90-110			
Matrix Spike Dup (5A29161-MSD1)		Source:	C5A303	8-01	Prepared	& Analyze	d: 01/29/2	5			
Nitrate/Nitrite as N	0.505	0.0038	0.010	mg/L	0.500	0.0310	95	90-110	4	20	
			-	·			,	,			
					Prenared	& Analuza	d. 03/03/3	5			
Blank (5B03169-BLK1) Total Alkalinity	ND	5.0	5.0	mg/L as	Prepared	& Analyze	d: 02/03/2	5			
Total Alkalinity				mg/L as CaCO3	Prepared	& Analyze	d: 02/03/2	5			
Total Alkalinity Hydroxide	ND	5.0	5.0		Prepared	& Analyze	d: 02/03/2	5			
Total Alkalinity				CaCO3	Prepared	& Analyze	<u>d: 02/03/2</u>	5			
Total Alkalinity Hydroxide Carbonate	ND ND	5.0 5.0	5.0 5.0	CaCO3 "		& Analyze					
Total Alkalinity Hydroxide Carbonate Bicarbonate	ND ND	5.0 5.0	5.0 5.0	CaCO3 " " " mg/L as							
Total Alkalinity Hydroxide Carbonate Bicarbonate LCS (5B03169-BS3) Total Alkalinity	ND ND ND	5.0 5.0 5.0	5.0 5.0 5.0	CaCO3 " "	Prepared		ed: 02/03/2	5			
Total Alkalinity Hydroxide Carbonate Bicarbonate LCS (5B03169-BS3) Total Alkalinity Carbonate	ND ND ND 1240	5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0	CaCO3 " " " mg/L as	Prepared 1250 1250		ed: 02/03/2 99 97	5 90-110 90-110			
Total Alkalinity Hydroxide Carbonate Bicarbonate LCS (5B03169-BS3) Total Alkalinity Carbonate Duplicate (5B03169-DUP1)	ND ND ND 1240	5.0 5.0 5.0 5.0 5.0	5.0 5.0 5.0 5.0 5.0	CaCO3 " " " mg/L as CaCO3 "	Prepared 1250 1250	& Analyze	ed: 02/03/2 99 97	5 90-110 90-110	4	25	
Total Alkalinity Hydroxide Carbonate Bicarbonate LCS (5B03169-BS3)	ND ND ND 1240 1210	5.0 5.0 5.0 5.0 5.0 Source:	5.0 5.0 5.0 5.0 5.0 C5A303	CaCO3 " " " " " " " " " " " " " " " " " " "	Prepared 1250 1250	& Analyze & Analyze	ed: 02/03/2 99 97	5 90-110 90-110	4	25 25	
Total Alkalinity Hydroxide Carbonate Bicarbonate LCS (5B03169-BS3) Total Alkalinity Carbonate Duplicate (5B03169-DUP1) Total Alkalinity	ND ND 1240 1210 123	5.0 5.0 5.0 5.0 5.0 Source: 5.0	5.0 5.0 5.0 5.0 5.0 C5A303 5.0	CaCO3 " " " " " " " " " " " " " " " " " " "	Prepared 1250 1250	& Analyze & Analyze 128	ed: 02/03/2 99 97	5 90-110 90-110	4		

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4320 West Fourth Street, Suite 200Los Angeles CA, 90013Pro.

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Anions - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5B03169, Prep Method: N/A, Ana	lyst: GM	в									
Duplicate (5B03169-DUP2)		Source:	C5A337	6-01	Prepared	& Analyze	d: 02/03/2	5			
Total Alkalinity	197	5.0	5.0	mg/L as CaCO3		190			3	25	
Hydroxide	ND	5.0	5.0	"		ND				25	
Carbonate	ND	5.0	5.0	"		ND				25	
Bicarbonate	197	5.0	5.0	"		190			3	25	
Matrix Spike (5B03169-MS1)		Source:	C5A303	8-01RE1	Prepared	& Analyzed	d: 02/03/2	5			
Total Alkalinity	1380	5.0	5.0	mg/L as CaCO3	1250	128	100	80-120			
Matrix Spike Dup (5B03169-MSD1)		Source:	C5A303	8-01RE1	Prepared	& Analyzed	d: 02/03/2	5			
Total Alkalinity	1360	5.0	5.0	mg/L as CaCO3	1250	128	98	80-120	2	25	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4320 West Fourth Street, Suite 200ProjectLos Angeles CA, 90013Project

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Solids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A28165, Prep Method: N/	/A, Analyst: JXM										
Duplicate (5A28165-DUP1)		Source:	C5A303	8-01	Prepared	& Analyze	d: 01/28/2	5			
Settleable Solids	ND	0.1	0.1	mL/L		ND				20	
Duplicate (5A28165-DUP2)		Source:	C5A303	8-07	Prepared	& Analyze	d: 01/28/2	5			
Settleable Solids	ND	0.1	0.1	mL/L		ND				20	
Batch 5A28220, Prep Method: N/	/A, Analyst: EZP										
Blank (5A28220-BLK1)					Prepared	& Analyze	d: 01/29/2	5			
Total Dissolved Solids	ND	10	10	mg/L							
LCS (5A28220-BS1)					Prepared	& Analyze	d: 01/29/2	5			
Total Dissolved Solids	741	10	10	mg/L	746		99	90-110			
Duplicate (5A28220-DUP1)		Source:	C5A303	8-03	Prepared	& Analyze	d: 01/29/2	5			
Total Dissolved Solids	34600	500	500	mg/L		34300			0.9	25	
Duplicate (5A28220-DUP2)		Source:	C5A316	2-03	Prepared	& Analyze	d: 01/29/2	5			
Total Dissolved Solids	617	10	10	mg/L		601			3	25	
Batch 5A29101, Prep Method: N/	/A, Analyst: VM\	/									
Blank (5A29101-BLK1)					Prepared	& Analyze	d: 01/29/2	5			
Total Suspended Solids	ND	0.5	0.5	mg/L							
LCS (5A29101-BS1)					Prepared	& Analyze	d: 01/29/2	5			
Total Suspended Solids	483	5	5	mg/L	500		97	0-200			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4320 West Fourth Street, Suite 200ProjeLos Angeles CA, 90013Project

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Solids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A29101, Prep Method: N/	A, Analyst: VM	/									
Duplicate (5A29101-DUP1)		Source:	C5A267	2-01	Prepared	& Analyze	d: 01/29/2	5			
Total Suspended Solids	242	10	10	mg/L		250			3	25	
Duplicate (5A29101-DUP2)		Source:	C5A303	8-01	Prepared	& Analyze	d: 01/29/2	5			
Total Suspended Solids	15.1	0.5	0.5	mg/L		4.90			102	25	QFini QRPD
Batch 5A29162, Prep Method: N/	A, Analyst: EZF	•									
Blank (5A29162-BLK1)					Prepared	& Analyze	d: 01/29/2	5			
Total Dissolved Solids	ND	10	10	mg/L							
LCS (5A29162-BS1)					Prepared	& Analyze	d: 01/29/2	5			
Total Dissolved Solids	732	10	10	mg/L	746		98	90-110			
Duplicate (5A29162-DUP1)		Source:	C5A303	8-01	Prepared	& Analyze	d: 01/29/2	5			
Total Dissolved Solids	34700	500	500	mg/L		33800			3	25	
Duplicate (5A29162-DUP2)		Source:	C5A310	9-08	Prepared	& Analyze	d: 01/29/2	5			
Total Dissolved Solids	160	10	10	mg/L	· ·	168			5	25	
Batch 5A30120, Prep Method: N/	A, Analyst: CLF	•									
Blank (5A30120-BLK1)					Prepared	& Analyze	d: 01/30/2	5			
Total Suspended Solids	ND	0.5	0.5	mg/L							
LCS (5A30120-BS1)					Prepared	& Analyze	d: 01/30/2	5			

Babcock Laboratories, Inc. - Riverside

Total Suspended Solids

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety.

100

0-200

501

5

5

mg/L

500

State Water Resources Control Board - Region 4Project:RWB4_WildFireResponse_2025320 West Fourth Street, Suite 200Project Number:Wildfire Response 2025Reported:Los Angeles CA, 90013Project Manager:John Salguero02/07/25 16:41

Solids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A30120, Prep Method: N	/A, Analyst: CLF	•									
Duplicate (5A30120-DUP1)		Source:	C5A303	8-06	Prepared	& Analyze	d: 01/30/25	5			
Total Suspended Solids	15.6	0.5	0.5	mg/L		9.00			54	25	QFini QRPD
Duplicate (5A30120-DUP2)		Source:	C5A303	8-07	Prepared	& Analyze	d: 01/30/25	5			
Total Suspended Solids	19.2	0.5	0.5	mg/L		12.1			45	25	QFini QRPD
Batch 5B03213, Prep Method: N	/A, Analyst: CLP)									
Blank (5B03213-BLK1)					Prepared	& Analyze	d: 02/03/25	5			
Total Suspended Solids	ND	0.5	0.5	mg/L							
LCS (5B03213-BS1)					Prepared	& Analyze	d: 02/03/25	5			
Total Suspended Solids	431	5	5	mg/L	500		86	0-200			
Duplicate (5B03213-DUP1)		Source:	C5A303	8-01RE1	Prepared	& Analyze	d: 02/03/25	5			
Total Suspended Solids	4.00	0.5	0.5	mg/L		14.6			114	25	QRPD
Duplicate (5B03213-DUP2)		Source:	C5A329	6-01	Prepared	& Analyze	d: 02/03/25	5			
Total Suspended Solids	318	10	10	mg/L		354			11	25	QRPD
Batch 5B05080, Prep Method: N	/A, Analyst: PBS	5									
Blank (5B05080-BLK1)					Prepared	& Analyze	d: 02/05/25	5			
Total Suspended Solids	ND	0.5	0.5	mg/L	-	-					
LCS (5B05080-BS1)					Prepared	& Analyze	d: 02/05/25	5			
Total Suspended Solids	498	5	5	mg/L	500		100	0-200			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4	Project: RWB4_WildFireResponse_2025	
320 West Fourth Street, Suite 200	Project Number: Wildfire Response 2025	Reported:
Los Angeles CA, 90013	Project Manager: John Salguero	02/07/25 16:41

Solids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5B05080, Prep Method: N/	/A, Analyst: PBS	;									
Duplicate (5B05080-DUP1)	:	Source: (C5A303	8-06RE1	Prepared	& Analyze	d: 02/05/2	5			
Duplicate (5B05080-DUP1) Total Suspended Solids	8.20	Source: (0.5	C5A303 0.5	8-06RE1 mg/L	Prepared	& Analyze 12.7	d: 02/05/2	5	43	25	QRPDo
_ • • • •	8.20	0.5	0.5			12.7	ed: 02/05/28		43	25	QRPDo

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4320 West Fourth Street, Suite 200Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Aggregate Organic Compounds - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
, individ	Result	MDL		Onito	Level	rtcourt	/iiiiiiii	Linito		Linne	10003
Batch 5A28145, Prep Method: Acid	Digest., Anal	yst: GM	В								
Blank (5A28145-BLK1)					Prepared	& Analyze	d: 01/28/2	25			
Total Organic Carbon	ND		0.70	mg/L							
LCS (5A28145-BS1)					Prepared	& Analyze	d: 01/28/2	25			
Total Organic Carbon	5.00		0.70	mg/L	5.00		100	80-120			
Duplicate (5A28145-DUP1)		Source: (C5A303	B-01	Prepared	& Analyze	d: 01/28/2	25			
Total Organic Carbon	0.990		0.70	mg/L		1.04			5	25	
Matrix Spike (5A28145-MS1)		Source: (C5A303	B-01	Prepared	& Analyze	d: 01/28/2	25			
Total Organic Carbon	6.09		0.70	mg/L	5.00	1.04	101	80-120			
Matrix Spike Dup (5A28145-MSD1)		Source: (C5A303	8-01	Prepared	& Analyze	d: 01/28/2	25			
Total Organic Carbon	6.08		0.70	mg/L	5.00	1.04	101	80-120	0.2	25	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Nutrients - Quality Control

Babcock Laboratories, Inc. - Riverside

Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
nalyst: VM	v									
				Prepared	& Analyze	d: 01/28/2	5			
ND	0.016	0.050	mg/L							
				Prepared	& Analyze	d: 01/28/2	5			
1.25	0.016	0.050	mg/L	1.25		100	90-110			
	Source	C5A303	8-01	Prepared	& Analyze	d: 01/28/2	5			
ND	0.016	0.050	mg/L		ND				25	
	Source	C5A303	8-01	Prepared	& Analyze	d: 01/28/2	5			
49.2	0.016	0.050	mg/L	62.5	ND	79	80-120			QMS(D)
	Source	C5A260	1-12RE2	Prepared	& Analyze	d: 01/28/2	5			
116	0.016	0.050	mg/L	125	2.30	91	80-120			
	Source	C5A303	8-01	Prepared	& Analyze	d: 01/28/2	5			
50.8	0.016	0.050	mg/L	62.5	ND	81	80-120	3	25	
Phos - Acid	Digest	, Analys	t: BXR							
				Prepared	& Analyze	d: 01/28/2	.5			
ND	0.02	0.05	mg/L							
				Prepared	& Analyze	d: 01/28/2	5			
0.245	0.02	0.05	mg/L	0.250	•	98	90-110			
	Analyst: VM ND 1.25 ND 49.2 116 50.8 Phos - Acid ND	ND 0.016 1.25 0.016 1.25 0.016 Source: ND 49.2 0.016 Source: 116 116 0.016 Source: 50.8 50.8 0.016 ND 0.02	ND 0.016 0.050 1.25 0.016 0.050 1.25 0.016 0.050 Source: C5A303 ND 0.016 0.050 Source: C5A303 49.2 0.016 0.050 Source: C5A260 116 0.016 0.050 Source: C5A303 50.8 0.016 0.050 Phos - Acid Digest, Analys ND 0.02 0.05 0.05	ND 0.016 0.050 mg/L 1.25 0.016 0.050 mg/L 1.25 0.016 0.050 mg/L Source: C5A3038-01 ND 0.016 0.050 mg/L Source: C5A3038-01 49.2 0.016 0.050 mg/L Source: C5A2601-12RE2 116 0.016 0.050 mg/L Source: C5A3038-01 49.2 0.016 0.050 mg/L Source: C5A3038-01 50.8 0.016 0.050 mg/L Source: C5A3038-01 50.8 0.016 0.050 mg/L Phos - Acid Digest, Analyst: BXR ND 0.02 0.05 mg/L	Malyst: VMV Prepared ND 0.016 0.050 mg/L Prepared 1.25 0.016 0.050 mg/L 1.25 0.016 0.050 mg/L 1.25 Source: C5A3038-01 Prepared ND 0.016 0.050 mg/L Source: C5A3038-01 Prepared 49.2 0.016 0.050 mg/L Source: C5A2601-12RE2 Prepared 116 0.016 0.050 mg/L Source: C5A3038-01 Prepared 50.8 0.016 0.050 mg/L 50.8 0.016 0.050 mg/L 50.8 0.016 0.050 mg/L 62.5 Phos - Acid Digest, Analyst: BXR Prepared ND 0.02 0.05 mg/L	Result MDL RL Units Level Result Imalyst: VMV Prepared & Analyze Prepared & Analyze Prepared & Analyze ND 0.016 0.050 mg/L Prepared & Analyze Prepared & Analyze 1.25 0.016 0.050 mg/L Prepared & Analyze ND 1.25 0.016 0.050 mg/L Prepared & Analyze ND ND 0.016 0.050 mg/L ND ND ND Source: C5A3038-01 Prepared & Analyze ND ND ND 49.2 0.016 0.050 mg/L 62.5 ND Source: C5A2601-12RE2 Prepared & Analyze 116 0.016 0.050 mg/L 125 2.30 Source: C5A3038-01 Prepared & Analyze 50.8 0.016 0.050 mg/L 62.5 ND Phos - Acid Digest, Analyst: BXR Prepared & Analyze ND 0.02 0.05 mg/L Prepared & Analyze	Result MDL RL Units Level Result %REC Analyst: VMV Prepared & Analyzed: 01/28/2 ND 0.016 0.050 mg/L Prepared & Analyzed: 01/28/2 ND 0.016 0.050 mg/L 1.25 100 Source: C5A3038-01 Prepared & Analyzed: 01/28/2 ND ND 0.016 0.050 mg/L 1.25 100 Source: C5A3038-01 Prepared & Analyzed: 01/28/2 ND 01/28/2 ND 0.016 0.050 mg/L 62.5 ND 79 Source: C5A2601-12RE2 Prepared & Analyzed: 01/28/2 01/28/2 01/2 0.01/28/2 116 0.016 0.050 mg/L 125 2.30 91 Source: C5A3038-01 Prepared & Analyzed: 01/28/2 01/28/2 50.8 0.016 0.050 mg/L 62.5 ND 81 Phos - Acid Digest, Analyst: BXR Prepared & Analyzed: 01/28/2 ND 0.02 0.05 mg/L Prepa	Result MDL RL Units Level Result %REC Limits Analyst: VMV Prepared & Analyzed: 01/28/25 Prepare	Result MDL RL Units Level Result %REC Limits RPD Analyst: VMV Prepared & Analyzed: 01/28/25 Prepared & Analyzed: 01/28/25 Velocitie Velo	Result MDL RL Units Level Result %REC Limits RPD Limit Analyst: VMV

Fliosphorus, total as F	0.245	0.02	0.05	IIIg/L	0.250	90	90-110		
Duplicate (5A28192-DUP1)		Source:	C5A3038	3-12	Prepared & Anal	lyzed: 01/28/25	5		
Phosphorus, Total as P	0.0521	0.02	0.05	mg/L	0.04	77	9	25	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4320 West Fourth Street, Suite 200Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Nutrients - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5A28192, Prep Method: Total	Phos - Acid	Digest,	Analys	t: BXR							
Matrix Spike (5A28192-MS1)		Source:	C5A303	8-12	Prepared	& Analyze	d: 01/28/2	25			
Phosphorus, Total as P	0.295	0.02	0.05	mg/L	0.250	0.0477	99	80-120			
Matrix Spike Dup (5A28192-MSD1)		Source:	C5A303	8-12	Prepared	& Analyze	d: 01/28/2	25			
Phosphorus, Total as P	0.294	0.02	0.05	mg/L	0.250	0.0477	98	80-120	0.3	25	
Batch 5A30111, Prep Method: Acid I	Digest, Anal	yst: VM	v								
Blank (5A30111-BLK1)					Prepared:	01/31/25	Analyzed	: 02/03/25			
Kjeldahl Nitrogen	ND	0.09	0.1	mg/L							
LCS (5A30111-BS1)					Prepared:	01/31/25	Analyzed	: 02/03/25			
Kjeldahl Nitrogen	0.965	0.09	0.1	mg/L	1.00		96	80-120			
Duplicate (5A30111-DUP1)		Source:	C5A260	1-01	Prepared	01/31/25	Analyzed	: 02/03/25			
Kjeldahl Nitrogen	ND	0.9	1.0	mg/L		ND				25	
Matrix Spike (5A30111-MS1)		Source:	C5A260	1-01	Prepared:	01/31/25	Analyzed	: 02/03/25			
Kjeldahl Nitrogen	9.90	0.9	1.0	mg/L	10.0	ND	99	42-154			
Matrix Spike Dup (5A30111-MSD1)		Source:	C5A260	1-01	Prepared:	01/31/25	Analyzed	: 02/03/25			
Kjeldahl Nitrogen	9.50	0.9	1.0	mg/L	10.0	ND	95	42-154	4	25	
Batch 5A30113, Prep Method: Acid	Digest, Anal	yst: VM	v								
Blank (5A30113-BLK1)					Prepared:	01/31/25	Analyzed	: 02/03/25			

mg/L

Kjeldahl Nitrogen

0.09 0.1

ND

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Nutrients - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A30113, Prep Method: Acid I		lvst: VM									
		,									
LCS (5A30113-BS1)					Prepared	01/31/25	Analyzed	: 02/03/25			
Kjeldahl Nitrogen	0.960	0.09	0.1	mg/L	1.00		96	80-120			
Duplicate (5A30113-DUP1)		Source:	C5A303	8-12	Prepared	01/31/25	Analyzed	: 02/03/25			
Kjeldahl Nitrogen	0.975	0.9	1.0	mg/L		ND				25	J
Matrix Spike (5A30113-MS1)		Source:	C5A303	8-12	Prepared	01/31/25	Analyzed	: 02/03/25			
Kjeldahl Nitrogen	10.6	0.9	1.0	mg/L	10.0	ND	106	42-154			
Matrix Spike Dup (5A30113-MSD1)		Source:	C5A303	8-12	Prepared	01/31/25	Analyzed	: 02/03/25			
Kjeldahl Nitrogen	10.3	0.9	1.0	mg/L	10.0	ND	103	42-154	3	25	
Batch 5B03202, Prep Method: Ammo	onia - Gas I	Diffusion	, Analy	st: TRS							
Blank (5B03202-BLK1)					Prepared	& Analyze	d: 02/03/2	25			
Ammonia-Nitrogen	0.005	0.005	0.01	mg/L	•						J
LCS (5B03202-BS1)					Prepared	& Analyze	d: 02/03/2	25			
Ammonia-Nitrogen	0.498	0.005	0.01	mg/L	0.500		100	90-110			
Duplicate (5B03202-DUP1)		Source:	C5A303	8-01	Prepared	& Analyze	d: 02/03/2	25			
Ammonia-Nitrogen	0.0390	0.005	0.01	mg/L	· ·	0.0330			17	20	
Matrix Spike (5B03202-MS1)		Source:	C5A303	8-01	Prepared	& Analyze	d: 02/03/2	25			
Ammonia-Nitrogen	0.569	0.005	0.01	mg/L	0.500	0.0330	107	80-120			
Matrix Spike Dup (5B03202-MSD1)		Source:	C5A303	8-01	Prepared	& Analyze	d: 02/03/2	25			
Ammonia-Nitrogen	0.585	0.005	0.01	mg/L	0.500	0.0330	110	80-120	3	20	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4Project:320 West Fourth Street, Suite 200Project Number:Los Angeles CA, 90013Project Manager:

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Metals and Metalloids - Quality Control

Babcock Laboratories, Inc. - Riverside

Anglita				1.1.2.14	Spike	Source	0/ 552	%REC		RPD Limit	NI
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5A28160, Prep Method: EF	PA 200.2, Analys	st: AJH									
Blank (5A28160-BLK1)					Prepared:	: 01/28/25	Analyzed	: 01/30/25			
Arsenic	ND	1.8	5.0	ug/L							
Cadmium	ND	0.25	1.0	"							
Total Chromium	ND	4.0	20	"							
Copper	ND	3.3	10	"							
Lead	ND	3.3	10	"							
Manganese	ND	3.3	10	"							
Nickel	ND	3.3	10	"							
Selenium	ND	1.7	5.0	"							
Zinc	ND	5.0	10	"							
LCS (5A28160-BS1)					Prepared	01/28/25	Analyzed	: 01/30/25			
Arsenic	343	1.8	5.0	ug/L	332		103	85-115			
Cadmium	341	0.25	1.0	"	332		103	85-115			
Total Chromium	339	4.0	20	"	332		102	85-115			
Copper	330	3.3	10	"	332		99	85-115			
Lead	340	3.3	10	"	332		102	85-115			
Manganese	342	3.3	10	"	332		103	85-115			
Nickel	335	3.3	10	"	332		101	85-115			
Selenium	334	1.7	5.0	"	332		101	85-115			
Zinc	330	5.0	10	"	332		99	85-115			
Duplicate (5A28160-DUP1)		Source:	C5A262	9-01	Prepared:	01/28/25	Analyzed	: 01/30/25			
Arsenic	3.26	1.8	5.0	ug/L		3.15			3	20	
Cadmium	ND	0.25	1.0	"		ND				20	
Total Chromium	ND	4.0	20	"		ND				20	
Copper	ND	3.3	10	"		ND				20	
Lead	ND	3.3	10	"		ND				20	
Manganese	ND	3.3	10	"		ND				20	
Nickel	ND	3.3	10	"		ND				20	
Selenium	ND	1.7	5.0	"		ND				20	
Zinc	ND	5.0	10	"		ND				20	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4Pro320 West Fourth Street, Suite 200Project NurLos Angeles CA, 90013Project Man

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Metals and Metalloids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A28160, Prep Method: EPA 2	200.2, Analys	st: AJH									
Matrix Spike (5A28160-MS1)		Source:	C5A262	9-01	Prepared	01/28/25	Analyzed	: 01/30/25			
Arsenic	345	1.8	5.0	ug/L	332	3.15	103	70-130			
Cadmium	340	0.25	1.0	"	332	ND	102	70-130			
Total Chromium	341	4.0	20	"	332	ND	102	70-130			
Copper	331	3.3	10	"	332	ND	99	70-130			
Lead	339	3.3	10	"	332	ND	102	70-130			
Manganese	349	3.3	10	"	332	ND	105	70-130			
Nickel	338	3.3	10	"	332	ND	102	70-130			
Selenium	333	1.7	5.0	"	332	ND	100	70-130			
Zinc	329	5.0	10	"	332	ND	99	70-130			
Matrix Spike Dup (5A28160-MSD1)		Source:	C5A262	9-01	Prepared:	01/28/25	Analyzed	: 01/30/25			
Arsenic	345	1.8	5.0	ug/L	332	3.15	103	70-130	0.06	20	
Cadmium	341	0.25	1.0	"	332	ND	103	70-130	0.2	20	
Total Chromium	338	4.0	20	"	332	ND	102	70-130	0.7	20	
Copper	328	3.3	10	"	332	ND	99	70-130	0.8	20	
Lead	337	3.3	10	"	332	ND	101	70-130	0.3	20	
Manganese	343	3.3	10	"	332	ND	103	70-130	2	20	
Nickel	332	3.3	10	"	332	ND	100	70-130	2	20	
Selenium	332	1.7	5.0	"	332	ND	100	70-130	0.2	20	
Zinc	327	5.0	10	"	332	ND	98	70-130	0.6	20	

Blank (5A28182-BLK1)					Prepared: 01/28/25 Analyzed: 01/30/25
Aluminum	ND	17	50	ug/L	
Iron	ND	26	50	"	

State Water Resources Control Board - Region 4Project: RWB4_WildFireResponse_2025320 West Fourth Street, Suite 200Project Number: Wildfire Response 2025Los Angeles CA, 90013Project Manager: John Salguero

Reported: 02/07/25 16:41

Metals and Metalloids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A28182, Prep Method: EPA 200.2	, Analys	t: MGA									

LCS (5A28182-BS1)					Prepared:	01/28/25	Analyzed	I: 01/30/25			
Aluminum	1260	17	50	ug/L	1170		108	85-115			
Iron	1190	26	50	"	1170		102	85-115			
Duplicate (5A28182-DUP1)		Source:	C5A262	9-01	Prepared:	01/28/25	Analyzed	I: 01/30/25			
Aluminum	ND	170	500	ug/L		ND				20	
Iron	ND	260	500	"		ND				20	
Matrix Spike (5A28182-MS1)		Source:	C5A262	9-01	Prepared:	01/28/25	Analyzed	I: 01/30/25			
Aluminum	1200	170	500	ug/L	1170	ND	103	70-130			
Iron	1260	260	500	"	1170	ND	108	70-130			
Matrix Spike Dup (5A28182-MSD1)		Source:	C5A262	∋-01	Prepared:	01/28/25	Analyzed	I: 01/30/25			
Aluminum	1260	170	500	ug/L	1170	ND	108	70-130	5	20	
Iron	1280	260	500	"	1170	ND	110	70-130	2	20	

Batch 5A29096, Prep Method: 200.8/ No Digest, Analyst: AJH

Blank (5A29096-BLK1)					Prepared & Analyzed: 01/30
Arsenic-Dissolved	ND	1.8	5.0	ug/L	
Cadmium-Dissolved	ND	0.25	2.0		
Copper-Dissolved	ND	3.3	10		
Zinc-Dissolved	ND	5.0	10		
Selenium-Dissolved	ND	1.7	5.0		
Manganese-Dissolved	ND	3.3	10		
Lead-Dissolved	ND	3.3	10		
Nickel-Dissolved	ND	3.3	10		
Chromium-Dissolved	ND	4.0	20		

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4Project: RWE320 West Fourth Street, Suite 200Project Number: WildLos Angeles CA, 90013Project Manager: John

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Metals and Metalloids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A29096, Prep Method: 2	00.8/ No Digest,	Analyst	: AJH								
Blank (5A29096-BLK2)					Prepared	& Analyze	d: 01/30/2	5			
Arsenic-Dissolved	ND	1.8	5.0	ug/L							
Zinc-Dissolved	ND	5.0	10	"							
Nickel-Dissolved	ND	3.3	10	"							
Selenium-Dissolved	ND	1.7	5.0	"							
Copper-Dissolved	ND	3.3	10	"							
Lead-Dissolved	ND	3.3	10	"							
Manganese-Dissolved	ND	3.3	10	"							
Cadmium-Dissolved	ND	0.25	2.0	"							
Chromium-Dissolved	ND	4.0	20	"							
LCS (5A29096-BS1)					Prepared	& Analyze	d: 01/30/2	5			
Lead-Dissolved	49.0	3.3	10	ug/L	50.0		98	85-115			
Cadmium-Dissolved	48.6	0.25	2.0	"	50.0		97	85-115			
Arsenic-Dissolved	49.2	1.8	5.0	"	50.0		98	85-115			
Manganese-Dissolved	49.5	3.3	10	"	50.0		99	85-115			
Chromium-Dissolved	49.0	4.0	20	"	50.0		98	85-115			
Selenium-Dissolved	48.4	1.7	5.0	"	50.0		97	85-115			
Zinc-Dissolved	50.0	5.0	10	"	50.0		100	85-115			
Copper-Dissolved	47.7	3.3	10	"	50.0		95	85-115			
Nickel-Dissolved	47.7	3.3	10	"	50.0		95	85-115			
Duplicate (5A29096-DUP1)		Source:	C5A303	8-01	Prepared	& Analyze	d: 01/30/2	5			
Copper-Dissolved	ND	13	40	ug/L		ND				20	
Chromium-Dissolved	ND	16	80	"		ND				20	
Cadmium-Dissolved	ND	0.99	8.0	"		ND				20	
Arsenic-Dissolved	ND	7.1	20	"		ND				20	
Manganese-Dissolved	ND	13	40	"		ND				20	
Selenium-Dissolved	114	6.7	20	"		108			6	20	
Zinc-Dissolved	ND	20	40	"		ND				20	
Lead-Dissolved	ND	13	40	"		ND				20	
Nickel-Dissolved	ND	13	40	"		ND				20	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4320 West Fourth Street, Suite 200ProjectionLos Angeles CA, 90013Projection

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Metals and Metalloids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A29096, Prep Method: 200.8/	No Digest,	Analyst:	AJH								

Matrix Spike (5A29096-MS1)		Source:	C5A3038	3-01	Prepared	& Analyze	d: 01/30/2	25			
Lead-Dissolved	182	13	40	ug/L	200	ND	91	70-130			
Arsenic-Dissolved	201	7.1	20		200	ND	100	70-130			
Zinc-Dissolved	147	20	40		200	ND	74	70-130			
Manganese-Dissolved	210	13	40		200	ND	105	70-130			
Selenium-Dissolved	280	6.7	20		200	108	86	70-130			
Cadmium-Dissolved	162	0.99	8.0		200	ND	81	70-130			
Nickel-Dissolved	184	13	40		200	ND	92	70-130			
Chromium-Dissolved	220	16	80		200	ND	110	70-130			
Copper-Dissolved	176	13	40	"	200	ND	88	70-130			
Matrix Spike Dup (5A29096-MSD1)		Source:	C5A3038	3-01	Prepared	& Analyze	d: 01/30/2	25			
Copper-Dissolved	175	13	40	ug/L	200	ND	88	70-130	0.4	20	
Nickel-Dissolved	187	13	40		200	ND	94	70-130	2	20	
Chromium-Dissolved	222	16	80		200	ND	111	70-130	0.8	20	
_ead-Dissolved	180	13	40		200	ND	90	70-130	1	20	
Selenium-Dissolved	275	6.7	20		200	108	83	70-130	2	20	
Arsenic-Dissolved	203	7.1	20		200	ND	101	70-130	0.8	20	
Zinc-Dissolved	148	20	40		200	ND	74	70-130	0.7	20	
Cadmium-Dissolved	161	0.99	8.0		200	ND	81	70-130	0.3	20	
Manganese-Dissolved	213	13	40		200	ND	106	70-130	1	20	

Batch 5A30078, Prep Method: EPA 200.2, Analyst: TJK

Blank (5A30078-BLK1)					Prepared: 01/30/25 Analyzed: 01/31/25
Arsenic	ND	1.8	5.0	ug/L	
Cadmium	ND	0.25	1.0		
Total Chromium	ND	4.0	20		
Copper	ND	3.3	10		
ead	ND	3.3	10		
anganese	ND	3.3	10		
ickel	ND	3.3	10		
elenium	ND	1.7	5.0		
linc	ND	5.0	10		

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4Project320 West Fourth Street, Suite 200Project NumberLos Angeles CA, 90013Project Manager

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Metals and Metalloids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A30078, Prep Method: EP											_
LCS (5A30078-BS1)					Prepared:	: 01/30/25	Analyzed	: 01/31/25			
Arsenic	352	1.8	5.0	ug/L	332		106	85-115			
Cadmium	328	0.25	1.0	"	332		99	85-115			
Total Chromium	346	4.0	20	"	332		104	85-115			
Copper	331	3.3	10	"	332		100	85-115			
Lead	342	3.3	10		332		103	85-115			
Manganese	342	3.3	10		332		103	85-115			
Nickel	337	3.3	10	"	332		101	85-115			
Selenium	338	1.7	5.0	"	332		102	85-115			
Zinc	337	5.0	10	"	332		101	85-115			
Duplicate (5A30078-DUP1)		Source:	C5A303	8-11	Prepared:	01/30/25	Analyzed	01/31/25			
Arsenic	ND	8.8	25	ug/L		ND				20	
Cadmium	ND	1.2	5.0	"		ND				20	
Total Chromium	ND	20	100	"		ND				20	
Copper	ND	17	50	"		ND				20	
Lead	ND	17	50	"		ND				20	
Manganese	44.7	17	50	"		39.5			12	20	
Nickel	ND	17	50			ND				20	
Selenium	176	8.4	25	"		183			4	20	
Zinc	ND	25	50	"		ND				20	
Matrix Spike (5A30078-MS1)		Source:	C5A303	8-11	Prepared:	01/30/25	Analyzed	01/31/25			
Arsenic	362	8.8	25	ug/L	332	ND	109	70-130			
Cadmium	288	1.2	5.0	"	332	ND	87	70-130			
Total Chromium	362	20	100	"	332	ND	109	70-130			
Copper	305	17	50	"	332	ND	92	70-130			
Lead	301	17	50	"	332	ND	90	70-130			
Manganese	405	17	50	"	332	39.5	110	70-130			
Nickel	322	17	50	"	332	ND	97	70-130			
Selenium	518	8.4	25	"	332	183	101	70-130			
Zinc	262	25	50	"	332	ND	79	70-130			

Babcock Laboratories, Inc. - Riverside

1

0.7

3

2

2

2

20

20

20

20

20

20

State Water Resources Control Board - Region 4Pr320 West Fourth Street, Suite 200Project NumLos Angeles CA, 90013Project Man

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Metals and Metalloids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A30078, Prep Method: EPA 2	00.2, Analys	t: TJK									
Matrix Spike Dup (5A30078-MSD1)	:	Source:	C5A303	8-11	Prepared	: 01/30/25	Analyzed	: 01/31/25			
Matrix Spike Dup (5A30078-MSD1) Arsenic	364	Source:	C5A303	8-11 ug/L	Prepared: 332	: 01/30/25 ND	Analyzed 109	: 01/31/25 70-130	0.6	20	
, <u>,</u> ,							,		0.6 0.7	20 20	

Copper 309 17 50 332 ND 93 70-130 50 ... 332 70-130 Lead 299 17 ND 90 ... 332 416 17 50 39.5 113 70-130 Manganese .. Nickel 329 17 50 332 ND 99 70-130 25 .. 332 Selenium 529 8.4 183 104 70-130 .. Zinc 268 25 50 332 ND 81 70-130

Batch 5A31080, Prep Method: EPA 7470A/SM 3112B, Analyst: JTR

Blank (5A31080-BLK1)					Prepared: 01/3	1/25 Analyzed	1: 02/03/25	
Mercury-Dissolved	ND	0.11	0.20	ug/L				
Mercury	ND	0.11	0.20	"				
Blank (5A31080-BLK2)					Prepared: 01/3	1/25 Analyzed	1: 02/03/25	
Mercury-Dissolved	ND	0.11	0.20	ug/L				
Mercury	ND	0.11	0.20	"				
LCS (5A31080-BS1)					Prepared: 01/3	1/25 Analyzed	1: 02/03/25	
Mercury-Dissolved	4.58	0.11	0.20	ug/L	4.00	114	85-115	
Mercury	4.58	0.11	0.20	"	4.00	114	85-115	
Duplicate (5A31080-DUP1)		Source:	C5A303	8-01	Prepared: 01/3	1/25 Analyzed	1: 02/03/25	
Mercury-Dissolved	ND	0.56	1.0	ug/L	Ν	ID		20
Mercury	ND	0.56	1.0	"	Ν	ID		20

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4Project: RWB4_WildFireResponse_2025320 West Fourth Street, Suite 200Project Number: Wildfire Response 2025Los Angeles CA, 90013Project Manager: John Salguero

Reported: 02/07/25 16:41

Metals and Metalloids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A31080, Prep Method: EPA	7470A/SM 31	12B, An	alyst: 、	JTR							
Matrix Spike (5A31080-MS1)		Source: (C5A303	8-01	Prepared	: 01/31/25	Analyzed	02/03/25			

Mercury-Dissolved	23.7	0.56	1.0	ug/L	20.0	ND	119	70-130			
Mercury	23.7	0.56	1.0	"	20.0	ND	119	70-130			
Matrix Spike Dup (5A31080-MSD1)		Source:	C5A303	8-01	Prepared:	01/31/25	Analyzed	1: 02/03/25			
Mercury-Dissolved	23.7	0.56	1.0	ug/L	20.0	ND	118	70-130	0.1	20	
Mercury	23.7	0.56	1.0	"	20.0	ND	118	70-130	0.1	20	

Batch 5A31081, Prep Method: EPA 7470A/SM 3112B, Analyst: JTR

Blank (5A31081-BLK1)					Prepared:	01/31/25	Analyzed	1: 02/03/25			
Mercury-Dissolved	ND	0.11	0.20	ug/L							
Mercury	ND	0.11	0.20	"							
LCS (5A31081-BS1)					Prepared:	01/31/25	Analyzed	1: 02/03/25			
Mercury-Dissolved	4.81	0.11	0.20	ug/L	4.00		120	85-115			QLout
Mercury	4.81	0.11	0.20	"	4.00		120	85-115			QLout
Duplicate (5A31081-DUP1)		Source:	C5A303	8-07	Prepared:	01/31/25	Analyzed	1: 02/03/25			
Mercury-Dissolved	ND	0.56	1.0	ug/L		ND				20	
Mercury	ND	0.56	1.0	"		ND				20	
Matrix Spike (5A31081-MS1)		Source:	C5A303	8-07	Prepared:	01/31/25	Analyzed	1: 02/03/25			
Mercury-Dissolved	24.8	0.56	1.0	ug/L	20.0	ND	124	70-130			
Mercury	24.8	0.56	1.0	"	20.0	ND	124	70-130			
Matrix Spike Dup (5A31081-MSD1)		Source:	C5A303	B-07	Prepared:	01/31/25	Analyzed	1: 02/03/25			
Mercury-Dissolved	22.9	0.56	1.0	ug/L	20.0	ND	115	70-130	8	20	
Mercury	22.9	0.56	1.0	"	20.0	ND	115	70-130	8	20	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4Project: RWB4_WildFireResponse_2025320 West Fourth Street, Suite 200Project Number: Wildfire Response 2025Los Angeles CA, 90013Project Manager: John Salguero

Reported: 02/07/25 16:41

Metals and Metalloids - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5B04167, Prep Method: 200.7/ No	Digest, A	Analyst:	MGA								

Blank (5B04167-BLK1)					Prepared a	& Analyze	ed: 02/04/2	25			
Aluminum-Dissolved	ND	17	50	ug/L							
Iron-Dissolved	ND	26	50	"							
LCS (5B04167-BS1)					Prepared a	& Analyze	ed: 02/04/2	25			
Aluminum-Dissolved	458	17	50	ug/L	400		114	85-115			
Iron-Dissolved	1600	26	50	"	1600		100	85-115			
Matrix Spike (5B04167-MS1)	:	Source:	C5A303	B-01	Prepared a	& Analyze	ed: 02/04/2	25			
Aluminum-Dissolved	4620	170	500	ug/L	4000	563	101	70-130			
Iron-Dissolved	15500	260	500	"	16000	ND	97	70-130			
Matrix Spike Dup (5B04167-MSD1)	:	Source:	C5A303	B-01	Prepared a	& Analyze	ed: 02/04/2	25			
Aluminum-Dissolved	4940	170	500	ug/L	4000	563	110	70-130	7	20	
Iron-Dissolved	16300	260	500	"	16000	ND	102	70-130	5	20	

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Organochlorine Pesticides and PCBs by EPA 8000 Series - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyte	Result	MDL	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 5A30099, Prep Method: EPA 3	3510C, Analy	st: VSS									
Blank (5A30099-BLK1)					Prepared	01/30/25	Analyzed	: 02/05/25			
Aroclor 1016	ND	0.22	1.0	ug/L							
Aroclor 1221	ND	0.30	1.0	"							
Aroclor 1232	ND	0.81	1.0	"							
Aroclor 1242	ND	0.70	1.0	"							
Aroclor 1248	ND	0.48	1.0	"							
Aroclor 1254	ND	0.73	2.0	"							
Aroclor 1260	ND	0.15	1.0	"							
Surrogate: 2,4,5,6 Tetrachloro-m-xylene	0.069			"	0.150		46	12-120			
Surrogate: Decachlorobiphenyl	0.047			"	0.150		32	5-134			
LCS (5A30099-BS1)					Prepared	01/30/25	Analyzed	: 02/05/25			Q_nes
Aroclor 1016	1.09	0.22	1.0	ug/L	2.00		55	27-107			
Aroclor 1260	1.24	0.15	1.0	"	2.00		62	29-134			
Surrogate: 2,4,5,6 Tetrachloro-m-xylene	0.087			"	0.150		58	12-120			
Surrogate: Decachlorobiphenyl	0.060			"	0.150		40	5-134			
LCS Dup (5A30099-BSD1)					Prepared	01/30/25	Analyzed	: 02/05/25			Q nes
Aroclor 1016	1.08	0.22	1.0	ug/L	2.00		54	27-107	1	27	
Aroclor 1260	1.20	0.15	1.0	"	2.00		60	29-134	3	40	
Surrogate: 2,4,5,6 Tetrachloro-m-xylene	0.089			"	0.150		59	12-120			
Surrogate: Decachlorobiphenyl	0.043			"	0.150		29	5-134			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Semivolatile Organic Compounds by EPA 8270C SIM - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5A31119, Prep Method: E	PA 3510C, Analy	st: LLU									
Blank (5A31119-BLK1)					Prepared	: 01/31/25	Analyzed	: 02/03/25			
Benzo(a)anthracene	ND	0.02	0.05	ug/L							
Benzo(b)fluoranthene	ND	0.02	0.05								
Acenaphthene	ND	0.02	0.05								
Acenaphthylene	ND	0.02	0.05								
Anthracene	ND	0.01	0.05								
Benzo(a)pyrene	ND	0.02	0.05								
Benzo(ghi)perylene	ND	0.01	0.05								
Benzo(k)fluoranthene	ND	0.02	0.05	"							
Chrysene	ND	0.03	0.05								
Dibenzo(a,h)anthracene	ND	0.02	0.05	"							
Fluoranthene	ND	0.02	0.05	"							
Fluorene	ND	0.02	0.05								
Indeno(1,2,3-cd)pyrene	ND	0.02	0.05	"							
Naphthalene	ND	0.02	0.05								
Phenanthrene	ND	0.02	0.05								
Pyrene	ND	0.01	0.05								
Surrogate: Anthracene-d10	0.087			"	0.100		87	10-162			
LCS (5A31119-BS1)					Prepared	: 01/31/25	Analyzed	02/03/25			
Benzo(a)anthracene	0.424	0.02	0.05	ug/L	0.500		85	28-124			
Benzo(b)fluoranthene	0.415	0.02	0.05		0.500		83	21-133			
Acenaphthene	0.415	0.02	0.05		0.500		83	31-104			
Acenaphthylene	0.409	0.02	0.05		0.500		82	29-109			
Anthracene	0.422	0.01	0.05		0.500		84	24-117			
Benzo(a)pyrene	0.377	0.02	0.05		0.500		75	16-129			
Benzo(ghi)perylene	0.370	0.01	0.05	"	0.500		74	15-136			
Benzo(k)fluoranthene	0.392	0.02	0.05	"	0.500		78	18-139			
Chrysene	0.396	0.03	0.05	"	0.500		79	30-114			
Dibenzo(a,h)anthracene	0.344	0.02	0.05	"	0.500		69	13-143			
Fluoranthene	0.454	0.02	0.05	"	0.500		91	25-121			
Fluorene	0.424	0.02	0.05	"	0.500		85	28-111			
Indeno(1,2,3-cd)pyrene	0.413	0.02	0.05		0.500		83	10-141			
Naphthalene	0.410	0.02	0.05	"	0.500		82	29-100			
Phenanthrene	0.436	0.02	0.05	"	0.500		87	30-111			
Pyrene	0.406	0.01	0.05		0.500		81	37-120			
Surrogate: Anthracene-d10	0.091			"	0.100		91	10-162			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Semivolatile Organic Compounds by EPA 8270C SIM - Quality Control

Babcock Laboratories, Inc. - Riverside

Analyta			-		Spike	Source	0/	%REC	000	RPD	N 1 - 4
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5A31119, Prep Method: EF	PA 3510C, Analy	st: LLU									
LCS (5A31119-BS2)					Prepared:	02/01/25	Analyzed	02/03/25			
Benzo(a)anthracene	0.499	0.02	0.05	ug/L	0.500		100	28-124			
Benzo(b)fluoranthene	0.477	0.02	0.05		0.500		95	21-133			
Acenaphthene	0.374	0.02	0.05		0.500		75	31-104			
Acenaphthylene	0.387	0.02	0.05		0.500		77	29-109			
Anthracene	0.429	0.01	0.05		0.500		86	24-117			
Benzo(a)pyrene	0.456	0.02	0.05	"	0.500		91	16-129			
Benzo(ghi)perylene	0.450	0.01	0.05	"	0.500		90	15-136			
Benzo(k)fluoranthene	0.453	0.02	0.05	"	0.500		91	18-139			
Chrysene	0.446	0.03	0.05	"	0.500		89	30-114			
Dibenzo(a,h)anthracene	0.441	0.02	0.05	"	0.500		88	13-143			
Fluoranthene	0.500	0.02	0.05		0.500		100	25-121			
Fluorene	0.406	0.02	0.05	"	0.500		81	28-111			
Indeno(1,2,3-cd)pyrene	0.489	0.02	0.05		0.500		98	10-141			
Naphthalene	0.345	0.02	0.05		0.500	500 69		29-100			
Phenanthrene	0.437	0.02	0.05		0.500		87	30-111			
Pyrene	0.444	0.01	0.05		0.500		89	37-120			
Surrogate: Anthracene-d10	0.097			"	0.100		97	10-162			
Matrix Spike (5A31119-MS1)		Source:	C5A297	3-01	Prepared:	01/31/25	Analyzed	02/03/25			
Benzo(a)anthracene	0.231	0.02	0.05	ug/L	0.530	ND	44	10-114			
Benzo(b)fluoranthene	0.171	0.02	0.05	"	0.530	ND	32	28-97			
Acenaphthene	0.300	0.02	0.05	"	0.530	ND	57	10-101			
Acenaphthylene	0.344	0.02	0.05	"	0.530	ND	65	10-114			
Anthracene	0.348	0.01	0.05		0.530	0.0344	59	10-114			
Benzo(a)pyrene	0.172	0.02	0.05		0.530	ND	32	28-92			
Benzo(ghi)perylene	0.129	0.01	0.05		0.530	ND	24	10-87			
Benzo(k)fluoranthene	0.154	0.02	0.05		0.530	ND	29	10-98			
Chrysene	0.209	0.03	0.05		0.530	ND	39	10-106			
Dibenzo(a,h)anthracene	0.127	0.02	0.05		0.530	ND	24	12-90			
Fluoranthene	0.347	0.02	0.05		0.530	0.0310	60	10-117			
Fluorene	0.346	0.02	0.05		0.530	ND	65	10-115			
Indeno(1,2,3-cd)pyrene	0.138	0.02	0.05	"	0.530	ND	26	17-81			
Naphthalene	0.279	0.02	0.05	"	0.530	0.0320	47	10-100			
Phenanthrene	0.367	0.02	0.05		0.530	0.0328	63	10-111			
Pyrene	0.296	0.01	0.05		0.530	0.0290	50	10-121			
Surrogate: Anthracene-d10	0.082			"	0.106		77	10-162			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013

Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Semivolatile Organic Compounds by EPA 8270C SIM - Quality Control

Babcock Laboratories, Inc. - Riverside

					Spike	Source		%REC		RPD	
Analyte	Result	MDL	RL	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 5A31119, Prep Method: EPA 3	510C, Analy	st: LLU									
Matrix Spike Dup (5A31119-MSD1)	02/03/25										
Benzo(a)anthracene	0.456	0.02	0.05	ug/L	0.519	ND	88	10-114	66	40	QRPDa
Benzo(b)fluoranthene	0.395	0.02	0.05	"	0.519	ND	76	28-97	79	40	QRPDa
Acenaphthene	0.353	0.02	0.05	"	0.519	ND	68	10-101	16	40	
Acenaphthylene	0.418	0.02	0.05	"	0.519	ND	81	10-114	19	40	
Anthracene	0.476 0.01 0.05 "		0.519	0.0344	85	10-114	31	40			
Benzo(a)pyrene			0.519	ND	80	28-92	83	40	QRPDa		
Benzo(ghi)perylene	0.292	0.01	0.05	"	0.519	ND	56	10-87	78	40	QRPDa
Benzo(k)fluoranthene	0.360	0.02	0.05	"	0.519	0.519 ND		10-98	80	40	QRPDa
Chrysene	0.402	0.03	0.05		0.519	ND	77	10-106	63	40	QRPDa
Dibenzo(a,h)anthracene	0.317	0.02	0.05		0.519	ND	61	12-90	85	40	QRPDa
Fluoranthene	0.527	0.02	0.05		0.519	0.0310	96	10-117	41	40	QRPDa
Fluorene	0.413	0.02	0.05		0.519	ND	80	10-115	18	40	
Indeno(1,2,3-cd)pyrene	0.343	0.02	0.05		0.519	ND	66	17-81	85	40	QRPDa
Naphthalene	0.317	0.02	0.05		0.519	0.0320	55	10-100	13	40	
Phenanthrene	0.468	0.02	0.05		0.519	0.0328	84	10-111	24	40	
Pyrene	0.449	0.01	0.05	"	0.519	0.0290	81	10-121	41	40	QRPDa
Surrogate: Anthracene-d10	0.11			"	0.104		107	10-162			

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4 320 West Fourth Street, Suite 200 Los Angeles CA, 90013 Project: RWB4_WildFireResponse_2025 Project Number: Wildfire Response 2025 Project Manager: John Salguero

Reported: 02/07/25 16:41

Notes and Definitions

J	Estimated value

N_RLm Due to sample matrix, the reporting limit has been raised.

Nconf Result(s) confirmed by re-analysis.

- NLOhND The LCS recovery within this analytical batch was above method control limit for this analyte. Analyte not detected in this sample so high bias in LCS has no impact to sample result.
- NRPDo The RPD/precision of replicate analyses performed on this sample did not meet laboratory acceptance criteria.
- NSint Due to matrix interference, the surrogate recovery for this sample cannot be accurately quantified.
- Q_nes Insufficient sample for the sample duplicate and/or MS/MSD analysis.
- QFini Follow-up result also did not meet laboratory acceptance criteria.
- QFpas Follow-up result within laboratory acceptance criteria.
- QLout The LCS and/or LCSD recovery did not meet laboratory acceptance criteria.
- QMdil Due to sample dilution required from high analyte concentration and/or matrix interference, the Matrix Spike recovery for this analyte is not available.
- QMout MS and/or MSD recovery did not meet laboratory acceptance criteria.
- QMS(D) Matrix spike recovery was out of acceptance criteria. Precision and accuracy demonstrated by remaining matrix spike results.
- Qraw Based on raw data excluding numerical rounding, QC recovery was within laboratory acceptance criteria.
- QRPDa Both percent recoveries were acceptable, however, the RPD result was above laboratory acceptance criteria.
- QRPDI Analyte concentration was below range for valid RPD determination.

QRPDo The RPD value for the sample duplicate or MS/MSD did not meet laboratory acceptance criteria.

DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the Reporting Limit (or Method Detection Limit when listed)
NR	Not Reported
Dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference

Babcock Laboratories, Inc. - Riverside

State Water Resources Control Board - Region 4	Project: RWB4_WildFireResponse_2025	
320 West Fourth Street, Suite 200	Project Number: Wildfire Response 2025	Reported:
Los Angeles CA, 90013	Project Manager: John Salguero	02/07/25 16:41

Babcock Laboratories, Inc. - Riverside - Certification(s) List

Cert. ID Description Cert. Number

Expires

Babcock Laboratories, Inc. - Riverside

2-5 BABCOCK LABORATORIES 6100 Quail Valley Court

Riverside, CA 92507 T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

Page ____ 2 ___ of ___ 12

*This COC is for Non-CEDEN Projects only, results are not req	iired to	be in :	SWAM	IP 2.5	EDD To	emplate	

Sample Collection Agency: Agreement No.: 22-005-270 O = Other) Other) **Analyses Requested** Los Angeles RWQCB =0 Sample Collection Agency Address: **Project Code:** (See Codes Below) osite; Container Type (P = Plastic; G = Glass; 320 W. 4th Street, Los Angeles, CA 90013 RWB4 WildFireResponse 2025 Sample Type (G = Grab; C = Com Metals, Ca, Hardness Project Name: RWB4 Wildfire Response 2025 OP, metals per historical GeoTracker Global ID: S04, JLH 1/27/2025 NO3N+NO2N, PCBc (8082 Aroclors) (See Preservation Code **Project Lead:** Field Lead: TSS, TDS, Alk, **Dissolved Metals** # of Containers Sample Matrix Name: Emily Duncan Name: Ashley Duong 8270 PAH SIM NH3 Phone: (213) 576-6679 Phone: 626-430-5360 SS, TSS, NO3N, I Email: emily.duncan@waterboards.ca.gov TP, TN, Email: Ashduong@ph.lacounty.gov Total I TOC Sample ID Date Time Location Notes **DPH 105B** 01/27/25 0910 1) Santa Monica State Beach, 50 yds east of SD SSW G Ρ 1 4 X 1L Plastic HDPE x4 2) 0122125 **DPH 105B** 0913 Santa Monica State Beach, 50 vds east of SD G 1 2 SSW G Х Х 1L Amber Glass x 2 01/27/25 3) **DPH 105B** 0916 Santa Monica State Beach, 50 yds east of SD SSW G P 2 1 Х 250 mL Plastic HDPE (Nitric) 4) **DPH 105B** 01/27/25 0914 Santa Monica State Beach, 50 yds east of SD 2,9 SSW G P 1 X Filtered 250 mL Plastic HDPE (Nitric) 01/27/25 5) **DPH 105B** 0916 Santa Monica State Beach, 50 yds east of SD SSW G P 4 1 Х 250 mL Plastic HDPE (Sulfuric) 6) **DPH 105B** 01 27 25 0918 Santa Monica State Beach, 50 yds east of SD SSW G G 4 3 Х 40mL Amber Vial x3 (Sulfuric) 7) КD 8) C5A3038 9) Rc'd: 01/27/2025 18:01 JI H Manual-PDF 10) Samples Relinguished By: Samples Received By: Name (Print) and Agency Signature Date Time Name (Print) and Agency Signature Date Time DPI-01/27 1) 525 JEN W. CHEN 25 20 18,00 2) 3) 4) **Sample Matrix Preservation Codes** Sample Receipt - Completed by Laboratory personnel: Laboratory Notes: **Special Instructions:** SFW = Surface Fresh Water; 1. Cool, ≤ 6 °C Babcock - Can you analyze PFOS/PFOA if possible - Russ Colby Total Number of Sample Containers Received: SSW = Surface Salt Water: 2. HNO3 Evidence sample handling required? Conductivity: DW = Drinking Water; 3. HCI Dissolved Oxygen: GW = Groundwater; 8.3 4. H2SO4 Sample(s) Properly Cooled(Y) N / NA pH: 56.8 F **Return Shipping Containers?** SW = Stormwater; 5. Na2S2O3 Temperature Temperature: °C WW = Wastewater; 6. NaOH Turbidity OL = Other Liquids: 7. NaOH/ZnAcetate Sample(s) Intact(YY N / NA .59 Routine SO = Soil / Sediment; 8. NH4CI SL = Sludge / Slurry; 9. Filtered *3-5 Day OS = Other Solids; 10. Freeze, ≤ -10 °℃ Custody Seal(s) Intact: Y / N / NA OIMA-Helpdesk@waterboards.ca.gov Turn Around Time: Send O = Other (Rush) 11. None requirec Results 12. Other *48-Hr Sample(s) Accepted: Y / N to: emily.duncan@waterboards.ca.gov (Rush)

Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov Sampler: /

PEDRO

TIAN ,

v5.2.SWAMP IQ_2022.06.30

2 -6 BABCOCK LABORATORIES

6100 Quail Valley Court

Riverside, CA 92507

T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Sample Collection Agency: Agreement No.: 22-005-270 osite; 0 = Other) (P = Plastic; G = Glass; O = Other) **Analyses Requested** Los Angeles RWQCB Sample Collection Agency Address: Project Code: Below) 320 W. 4th Street, Los Angeles, CA 90013 RWB4 WildFireResponse 2025 s Below) Codes Ca, Hardness Sample Type (G = Grab; C = Con OP, Project Name: RWB4 Wildfire Response 2025 Codes (See S04, SS, TSS, TDS, AIK, SU4, NO3N, NO3N+NO2N, GeoTracker Global ID: PCBc (8082 Aroclors) Code ((See Project Lead: Field Lead: **Dissolved Metals** Matrix (**Container Type** # of Containers PAH SIM Name: Emily Duncan Name: Ashley Duong Preservation fotal Metals, TN, NH3 Phone: (213) 576-6679 Phone: 626-430-5360 Sample Email: emily.duncan@waterboards.ca.gov Email: Ashduong@ph.lacounty.gov 8270 TOC Sample ID Date Time ď. Location Notes 0933 SMP 2-7 011715 1) Will Rogers State Beach, Santa Monica Canvon SD G Ρ SSW 1 4 Х 1L Plastic HDPE x4 0935 2) 01/2/1/25 SMP 2-7 Will Rogers State Beach, Santa Monica Canyon SD SSW G G 1 2 Х Х 1L Amber Glass x 2 3) SMP 2-7 0040 Wi I Rogers State Beach, Santa Monica Canyon SD P 01 2125 SSW G 2 1 X 250 mL Plastic HDPE (Nitric) 0936 SMP 2-7 4) 21/25 Will Rogers State Beach, Santa Monica Canyon SD SSW G Ρ 2,9 1 Х 011 Filtered 250 mL Plastic HDPE (Nitric) SMP 2-7 5) 01 27 25 nau Will Rogers State Beach, Santa Monica Canvon SD SSW G P 1 4 X 250 mL Plastic HDPE (Sulfuric) 6) SMP 2-7 Daus Will Rogers State Beach, Santa Monica Canvon SD 01 27 25 SSW G G 4 3 X 40mL Amber Vial x3 (Sulfuric) 7) C5A3038 8) 9) Rc'd: 01/27/2025 18:01 JI H Manual-PDF 10) Samples Relinguished By: Samples Received By: Name (Print) and Agency Time Signature Date Name (Print) and Agency Signature Date Time 525 1) 0127 25 LEN W. DPIT 5:30 2) 123 8:0 billio 3) 4) Sample Matrix **Preservation Codes** Sample Receipt - Completed by Laboratory personnel: Laboratory Notes: Special Instructions: SFW = Surface Fresh Water; 1. Cool, ≤ 6 °C Babcock - Can you analyze PFOS/PFOA if possible - Russ Colby Total Number of Sample Containers Received: Evidence sample handling required? SSW = Surface Salt Water: 2. HNO3 Conductivity: DW = Drinking Water; 3. HCI Dissolved Oxygen: GW = Groundwater; 4. H2SO4 Sample(s) Properly Cooled: Y/N / NA pH: **Return Shipping Containers?** SW = Stormwater; 5. Na2S2O3 Temperature emperature QF °C WW = Wastewater; 6. NaOH urbidity 145 OL = Other Liquids; 7. NaOH/ZnAcetate Sample(s) Intact(Y) N / NA Routine SO = Soil / Sediment; 8. NH4CI SL = Sludge / Slurry; 9. Filtered *3-5 Day OS = Other Solids; 10. Freeze, ≤ -10 °C Custody Seal(s) Intact: Y / N //NA OIMA-Helpdesk@waterboards.ca.gov Turn Around Time: Send (Rush) O = Other 11. None required Results 12. Other *48-Hr Sample(s) Accepted: Y / N to: emily.duncan@waterboards.ca.gov (Rush)

Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov Sampler:

EDRON

(TIAN)

VI- JEN

v5.2.SWAMP IQ_2022.06.30

BABCOCK LABORATORIES

6100 Quail Valley Court

Riverside, CA 92507

T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

5

of 12

Page

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Sample Collection Agency: Agreement No.: 22-005-270 (P = Plastic; G = Glass; O = Other) **Analyses Requested** Oth Los Angeles RWQCB Sample Collection Agency Address: 0 Project Code: Below) 320 W. 4th Street, Los Angeles, CA 90013 RWB4_WildFireResponse 2025 Codes Below) Codes Total Metals, Ca, Hardness Project Name: RWB4 Wildfire Response 2025 OP, ů " (See GeoTracker Global ID: S04, SS, TSS, TDS, Alk, SO4 NO3N, NO3N+NO2N, Grab; PCBc (8082 Aroclors) Preservation Code (See **Project Lead:** Field Lead: **Dissolved Metals** Sample Type (G = **Container Type** # of Containers Sample Matrix PAH SIM Name: Emily Duncan Name: Ashley Duong TN, NH3 Phone: (213) 576-6679 Phone: 626-430-5360 Email: emily.duncan@waterboards.ca.gov Email: Ashduong@ph.lacounty.gov 8270 10C Sample ID Date Time Location à Notes 1) **DPH 103** 1130 Will Rogers State Beach, Temescal Canvon SD 127125 SSW G Ρ 1 4 Х 1L Plastic HDPE x4 1133 2) **DPH 103** Will Rogers State Beach, Temescal Canyon SD SSW G G 1 2 X X 1L Amber Glass x 2 3) **DPH 103** 1135 Will Rogers State Beach, Temescal Canyon SD Ρ 2 SSW G 1 Х 250 mL Plastic HDPF (Nitric) 4) **DPH 103** 14 Will Rogers State Beach, Temescal Canyon SD SSW G Ρ 2,9 1 Х Filtered 250 mL Plastic HDPE (Nitric) 5) **DPH 103** Will Rogers State Beach, Temescal Canyon SD 1135 P SSW G 4 1 Х 250 mL Plastic HDPE (Sulfuric) 1138 6) **DPH 103** Will Rogers State Beach, Temescal Canyon SD SSW G G 4 3 X 1127/25 40mL Amber Vial x3 (Sulfuric) 7) 口派口 C5A3038 8) 9) Rc'd: 01/27/2025 18:01 JLH Manual-PDF 10) Samples Relinguished By: Samples Received By: Name (Print) and Agency Signature Date Time Name (Print) and Agency Signature Date Time 1) 1436 2) JEN W. GHEN DPH 01/27-125 VIGIL, DPH-EH 01/27 1438 3) W. CHEN DPH 1525 Jonli TAR 01/27 ann 4) 8 0 6 25 man Sample Receipt - Completed by Laboratory personnel: Sample Matrix **Preservation Codes** Laboratory Notes: **Special Instructions:** SFW = Surface Fresh Water; 1. Cool, ≤ 6 °C Babcock - Can you analyze PFOS/PFOA if possible - Russ Colby Total Number of Sample Containers Received: SSW = Surface Salt Water; 2. HNO3 Conductivity: N/A Evidence sample handling required? Dissolved Oxygen: N/A DW = Drinking Water; 3. HCI GW = Groundwater; 4. H2SO4 pH: S.C Sample(s) Properly Cooled: Y / N / NA **Return Shipping Containers?** SW = Stormwater; 5. Na2S2O3 Temperature: S7.0°F Temperature °C Turbidity: 80.4 WW = Wastewater; 6. NaOH OL = Other Liquids; 7. NaOH/ZnAcetate Sample(s) Intact, Y/N / NA Routine SO = Soil / Sediment: 8. NH4CI SL = Sludge / Slurry; 9. Filtered OS = Other Solids; *3-5 Day 10. Freeze, ≤ -10 °C Custody Seal(s) Intact: Y / N/ NA OIMA-Helpdesk@waterboards.ca.gov Turn Around Time: Send O = Other 11. None required (Rush) Results 12. Other *48-Hr Sample(s) Accepted: Y / N to: emily.duncan@waterboards.ca.gov (Rush)

Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov

v5.2.SWAMP IQ_2022.06.30

Sampler: Karty Vigil, End OKOhira, Daniel Bacani

1-6

BABCOCK LABORATORIES

6100 Quail Valley Court

Riverside, CA 92507

T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

Page 8

of 12

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Sample Collection Agency: Agreement No.: 22-005-270 Other) **Analyses Requested** Oth Los Angeles RWQCB =0 Sample Collection Agency Address: Ö Project Code: Below) Container Type (P = Plastic; G = Glass; 320 W. 4th Street, Los Angeles, CA 90013 **RWB4 WildFireResponse 2025** Below) (See Codes Metals, Ca, Hardness Project Name: RWB4 Wildfire Response 2025 OP des 11 GeoTracker Global ID: S04, SS, TSS, TDS, Alk, SO4 NO3N, NO3N+NO2N, Sample Type (G = Grab; PCBc (8082 Aroclors) See Preservation Code **Project Lead:** Agreement No.: 22-005-270 **Dissolved Metals** # of Containers Sample Matrix Name: Emily Duncan SIM Name: Ashley Duong NH3 Phone: (213) 576-6679 Phone: 626-430-5360 PAH Email: emily.duncan@waterboards.ca.gov TN, Email: Ashduong@ph.lacounty.gov 8270 Total I TOC Sample ID Date Time à Location Notes SMB 1-16 1) 1127125 Las Tunas Beach, Pena Creek SSW G P 1011 1 Х 4 1L Plastic HDPE x4 2) SMB 1-16 1127125 1012 Las Tunas Beach, Pena Creek 1 SSW G G 2 Х Х 1L Amber Glass x 2 3) SMB 1-16 127125 1013 Las Tunas Beach, Pena Creek SSW G Ρ 2 Х 1 250 mL Plastic HDPE (Nitric) 4) SMB 1-16 1019 Las Tunas Beach, Pena Creek 27125 SSW G P 2,9 1 Х Filtered 250 mL Plastic HDPE (Nitric) 5) SMB 1-16 1014 Las Tunas Beach, Pena Creek 1/27/25 SSW G P 4 1 X 250 mL Plastic HDPE (Sulfuric) 6) SMB 1-16 1015 Las Tunas Beach, Pena Creek SSW G G 4 3 40mL Amber Vial x3 (Sulfuric) 12725 X 7) 家回 8) C5A3038 9) Rc'd: 01/27/2025 18:01 JLH Manual-PDF 10) Samples Relinquished By: Samples Received By: Name (Print) and Agency Signature Date Time Name (Print) and Agency Signature Date Time DE 40 au A 1) DPH 11)0. D1 01 W. CHEN , JEN 2) 1436 01/27 Faturvigii DAT-EH Kettho W. CHEN DPH 01 127125 1525 3) W. CHEN. DPH Di 30 4) Me 77 23 6:01 Vand Villou Sample Matrix **Preservation Codes** Sample Receipt - Completed by Laboratory personnel: Laboratory Notes: **Special Instructions:** SFW = Surface Fresh Water: 1. Cool. ≤ 6 °C Babcock - Can you analyze PFOS/PFOA if possible - Russ Colby Total Number of Sample Containers Received: SSW = Surface Salt Water; 2. HNO3 Conductivity: N/A Evidence sample handling required? DW = Drinking Water; 3. HCI Dissolved Oxygen: N/A GW = Groundwater; 4. H2SO4 Sample(s) Properly Cooled: Y/N/NA PH: 4.8 **Return Shipping Containers?** 66 SW = Stormwater: 5. Na2S2O3 Temperature: 55.8°F Temperature °C WW = Wastewater; 6. NaOH Turbidity: 23.6 OL = Other Liquids; 7. NaOH/ZnAcetate Sample(s) Intact: Y/N / NA Routine SO = Soil / Sediment; 8. NH4CI SL = Sludge / Slurry; 9. Filtered *3-5 Day OS = Other Solids: 10. Freeze. ≤ -10 °C Custody Seal(s) Intact: Y / N //NA OIMA-Helpdesk@waterboards.ca.gov **Turn Around Time:** Send 0 = Other (Rush) 11. None required Results 12. Other *48-Hr to: emily.duncan@waterboards.ca.gov Sample(s) Accepted: Y / N (Rush)

Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov Kat Vigil,

Emy Drohira, Daniel Bacani

v5.2.SWAMP IQ_2022.06.30

1- 5

Sampler:

2-1 BABCOCK LABORATORIES

6100 Quail Valley Court

Riverside, CA 92507

T: (951) 653-3351

Sampler:

RISTIAN,

PEDRO,

IEN

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Sample Collection Agency: Agreement No.: 22-005-270 Other) osite; 0 = Other) **Analyses Requested** Los Angeles RWQCB Container Type (P = Plastic; G = Glass; O = Sample Collection Agency Address: **Project Code:** Below) 320 W. 4th Street, Los Angeles, CA 90013 **RWB4 WildFireResponse 2025** Codes Below) Codes Sample Type (G = Grab; C = Com Ca, Hardness OP, Project Name: RWB4 Wildfire Response 2025 Preservation Code (see GeoTracker Global ID: S04, SS, TSS, TDS, Alk, SO4 NO3N, NO3N+NO2N, PCBc (8082 Aroclors) (See Field Lead: **Project Lead: Dissolved Metals** Matrix # of Containers 8270 PAH SIM Name: Emily Duncan Name: Ashley Duong otal Metals, FP, TN, NH3 Phone: (213) 576-6679 Phone: 626-430-5360 Sample Email: emily.duncan@waterboards.ca.gov Email: Ashduong@ph.lacounty.gov LOC Sample ID Date Time Location Notes 0730 Dockweiler State Beach, Culver Boulevard SMB 2-10 01 21 25 SSW G Ρ 1 4 Х 1L Plastic HDPE x4 1) 2) SMB 2-10 01/27,25 0735 Dockweiler State Beach. Culver Boulevard SSW G 2 Х Х 1L Amber Glass x 2 G 1 01/27/25 0749 Ρ 2 Х 3) SMB 2-10 Dockweiler State Beach, Culver Boulevard SSW G 1 250 mL Plastic HDPE (Nitric) SMB 2-10 0740 Dockweiler State Beach, Culver Boulevard Ρ 2,9 Х Filtered 250 mL Plastic HDPE (Nitric) 4) 01/27 25 SSW G 1 SMB 2-10 01/27/25 P 5) 0744 Dockweiler State Beach, Culver Boulevard SSW G 4 1 Х 250 mL Plastic HDPE (Sulfuric) 6) SMB 2-10 01/21/25 0745 Dockweiler State Beach, Culver Boulevard SSW G 4 3 X 40mL Amber Vial x3 (Sulfuric) G 7) C5A3038 8) Rc'd: 01/27/2025 18:01 9) JI H Manual-PD 10) Samples Relinquished By: Samples Received By: Name (Print) and Agency Date Time Name (Print) and Agency Signature Signature Date Time ution 1925 DPH 1) 01/27/25 EN W. 27/25 5:30 CHEN 25 15:0 3) 4) Sample Matrix **Preservation Codes** Sample Receipt - Completed by Laboratory personnel: Laboratory Notes: **Special Instructions:** 1. Cool ≤ 6 °C Babcock - Can you analyze PFOS/PFOA if possible - Russ Colby SFW = Surface Fresh Water; Total Number of Sample Containers Received: Evidence sample handling required? 2. HNO3 Conductivity: SSW = Surface Salt Water: DW = Drinking Water; 3. HCl Dissolved Oxygen: 4. H2SO4 pH: 8.7 Sample(s) Properly Cooled: Y/N / NA GW = Groundwater; 55.2 F **Return Shipping Containers?** 5. Na2S2O3 SW = Stormwater; Temperature Temperature: °C Turbidity: WW = Wastewater: 6. NaOH OL = Other Liquids; 7. NaOH/ZnAcetate Sample(s) Intact (Y / N / NA 8.20 Routine SO = Soil / Sediment; 8. NH4CI 9. Filtered SL = Sludge / Slurry; *3-5 Day 10. Freeze, ≤ -10 °C Custody Seal(s) Intact: Y / N / NA OS = Other Solids; OIMA-Helpdesk@waterboards.ca.gov Turn Around Time: Send (Rush) 11. None required O = Other Results 12. Other *48-Hr to: emily.duncan@waterboards.ca.gov Sample(s) Accepted: Y / N (Rush) Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov v5.2.SWAMP IQ 2022.06.30

2-3 BABCOCK LABORATORIES

Riverside, CA 92507

T: (951) 653-3351

Sampler:

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

of 12

Page 3

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Sample Collection Agency: Agreement No.: 22-005-270 Sample Type (G = Grab; C = Composite; O = Other) (P = Plastic; G = Glass; O = Other) **Analyses Requested** Los Angeles RWQCB Below) Sample Collection Agency Address: Project Code: **RWB4 WildFireResponse 2025** 320 W. 4th Street, Los Angeles, CA 90013 Codes Below) Codes Ca, Hardness OP Project Name: RWB4 Wildfire Response 2025 (See S04, GeoTracker Global ID: SS, TSS, TDS, Alk, SO4 NO3N, NO3N+NO2N, PCBc (8082 Aroclors) Preservation Code (See Field Lead: **Project Lead:** Dissolved Metals **Container Type** # of Containers Sample Matrix PAH SIM Name: Emily Duncan Name: Ashley Duong fotal Metals, TN, NH3 Phone: (213) 576-6679 Phone: 626-430-5360 Email: emily.duncan@waterboards.ca.gov Email: Ashduong@ph.lacounty.gov 82701 TOC à Sample ID Date Time Location Notes 0833 1L Plastic HDPE x4 01/27/25 Venice City Beach, 50 yds south of SD G P 1 4 **DPH 107B** SSW Х 1) 01/27/25 0834 Venice City Beach, 50 yds south of SD X X 1L Amber Glass x 2 2) **DPH 107B** 5SW G G 1 2 01/27/25 0839 **DPH 107B** Venice City Beach, 50 yds south of SD SSW G Ρ 2 1 Х 250 mL Plastic HDPE (Nitric) 3) 01/27/25 0835 Ρ Х Filtered 250 mL Plastic HDPE (Nitric) Venice City Beach, 50 yds south of SD G 2,9 1 4) **DPH 107B** SSW 01/27/25 0840 5) DPH 107B Venice City Beach, 50 yds south of SD SSW G P 4 1 Х 250 mL Plastic HDPE (Sulfuric) 01/27/25 0840 Venice City Beach, 50 yds south of SD G 4 3 Х 40mL Amber Vial x3 (Sulfuric) 6) **DPH 107B** SSW G 7) C5A3038 8) Rc'd: 01/27/2025 18:01 9) JI H Manual-PD 10) Samples Received By: Samples Relinguished By Name (Print) and Agency Signature Date Date Name (Print) and Agency Signature Time Time Villen 01 27 25 1525 1) OPH JEN W. barry 0 2) 8 SO. 3) 4) Preservation Godes Sample Receipt - Completed by Laboratory personnel: Laboratory Notes: **Special Instructions: Sample Matrix** Babcock - Can you analyze PFOS/PFOA if possible - Russ Colby SFW = Surface Fresh Water: 1. Cool, ≤ 6 °C Total Number of Sample Containers Received: Evidence sample handling required? SSW = Surface Salt Water: 2. HNO3 Conductivity: 3. HCl Dissolved Oxygen: DW = Drinking Water; 8. 8 pH: GW = Groundwater; 4. H2SO4 Sample(s) Properly Cooled: N/N/NA **Return Shipping Containers?** 57.6F SW = Stormwater: 5. Na2S2O3 Temperature Temperature: °C 6. NaOH Turbidity: WW = Wastewater; Sample(s) Intact Y / N / NA OL = Other Liquids; 7. NaOH/ZnAcetate 2.8 Routine SO = Soil / Sediment; 8. NH4Cl 9. Filtered SL = Sludge / Slurry; *3-5 Day 10. Freeze, ≤ -10 °℃ Custody Seal(s) Intact: Y / N / NA OIMA-Helpdesk@waterboards.ca.gov OS = Other Solids; **Turn Around Time:** Send (Rush) O = Other 11. None required Results 12. Other *48-Hr to: emily.duncan@waterboards.ca.gov Sample(s) Accepted: Y / N (Rush)

Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov

VI-JEN

PEDRO.

ITIAN .

v5.2.SWAMP IQ_2022.06.30

BABCOCK LABORATORIES

Riverside, CA 92507

T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

Page _____9 ____ of ____12

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Sample Collection Agency: Agreement No.: 22-005-270 Other) Container Type (P = Plastic, G = Glass; O = Other) **Analyses Requested** Los Angeles RWQCB =0 Sample Collection Agency Address: **Project Code:** C = Composite; 320 W. 4th Street, Los Angeles, CA 90013 RWB4_WildFireResponse 2025 Codes Below) Codes Metals, Ca, Hardness Project Name: RWB4 Wildfire Response 2025 OP, (See GeoTracker Global ID: S04, SS, TSS, TDS, Alk, SO4 NO3N, NO3N+NO2N, PCBc (8082 Aroclors) Sample Type (G = Grab; Preservation Code Sample Matrix (see Project Lead: Field Lead: **Dissolved Metals** # of Containers Name: Emily Duncan PAH SIM Name: Ashley Duong **NH3** Phone: (213) 576-6679 Phone: 626-430-5360 TN, Email: emily.duncan@waterboards.ca.gov Email: Ashduong@ph.lacounty.gov 82701 Total I TOC Sample ID Date Time Location LP ' Notes 0852 01/27/25 1) SMB 3-4 Santa Monica State Beach, Pico-Kenter SD SSW G Р 1 4 Х 1L Plastic HDPE x4 2) SMB 3-4 01/27 25 0954 Santa Monica State Beach, Pico-Kenter SD SSW G G 1 2 Х X 1L Amber Glass x 2 3) SMB 3-4 01/27/25 0856 Santa Monica State Beach, Pico-Kenter SD P 2 SSW G 1 Х 250 mL Plastic HDPE (Nitric) 0855 4) SMB 3-4 01/27 25 Santa Monica State Beach, Pico-Kenter SD SSW G Ρ 2,9 1 Х Filtered 250 mL Plastic HDPE (Nitric) 01/27/25 0858 5) SMB 3-4 Santa Monica State Beach, Pico-Kenter SD SSW G P 4 1 Х 250 mL Plastic HDPE (Sulfuric) 6) SMB 3-4 0127/25 0900 Santa Monica State Beach, Pico-Kenter SD SSW G G 4 3 X 40mL Amber Vial x3 (Sulfuric) 7) C5A3038 8) 9) Rc'd: 01/27/2025 18:01 JI H Manual-PD 10) Samples Relinguished By: Samples Received By: Name (Print) and Agency Signature Date Time Name (Print) and Agency Signature Date Time 1525 DPH 01/27/25 1) W. (HEN 30 JEN ann pla. 2) Villourn 27 18:01 125 3) 4) Sample Matrix **Preservation Godes** Sample Receipt - Completed by Laboratory personnel: Laboratory Notes: **Special Instructions:** SFW = Surface Fresh Water; 1. Cool. ≤ 6 °C Babcock - Can you analyze PFOS/PFOA if possible - Russ Colby Total Number of Sample Containers Received: SSW = Surface Salt Water; 2. HNO3 Evidence sample handling required? Conductivity: DW = Drinking Water; 3. HCI Dissolved Oxygen: GW = Groundwater; 4. H2SO4 Sample(s) Properly Cooled (Y) N / NA pH: 8.0 Temperature: 58.2 F **Return Shipping Containers?** SW = Stormwater: 5. Na2S2O3 Temperature °C WW = Wastewater; 6. NaOH Turbidity: OL = Other Liquids; 7. NaOH/ZnAcetate 4.33 Sample(s) Intact (Y) N / NA Routine SO = Soil / Sediment; 8. NH4CI SL = Sludge / Slurry: 9. Filtered *3-5 Day OS = Other Solids; 10. Freeze, ≤ -10 °C Custody Seal(s) Intact: Y / N / NA OIMA-Helpdesk@waterboards.ca.gov Turn Around Time: Send (Rush) O = Other 11. None required Results 12. Other *48-Hr to: emily.duncan@waterboards.ca.gov Sample(s) Accepted: Y / N (Rush)

Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov

PEDRO. YI- JEN

v5.2.SWAMP IQ_2022.06.30

Sampler: CRISTIAN,

BABCOCK LABORATORIES

PRISTIAN, PEDRO, YI-JEN

6100 Quail Valley Court

Riverside, CA 92507

T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Samp	le Collection Agency: Los Angeles	eles RWQCB Project Code:								Composite; 0 = Other)	(P = Plastic; G = Glass; O = Other)						I	Anatyses	Request	ed		
Samp	le Collection Agency	Address:			Project Code	2:		te; 0 =	ss; 0 =	(wo												
	320 W. 4th Street, Los	Angeles, C	A 90013	-					Below)	mposi	i = Gla	Codes Below)					S					
					Project Nam GeoTracker		dfire Response 20	25	Codes Be	C = Co	istic; 6	(See Coc		, OP,			Ca, Hardness					
Projec	ct Lead:				Field Lead:	Global ID:			See Co	Grab;	P = Pla	de (s		, TDS, Alk, SO4, NO3N+NO2N,		ors)	Har					
	ie: Emily Duncan				Name: Ashl	lev Duong				= 9)	be (S	ers	TSS, TDS, Alk, 3N, NO3N+NC	5	rocl	Ca,	tals				
	ie: (213) 576-6679				Phone: 626-				Matrix	ype	er Ty	tion	tain	DS, 03N	H SII	82 A	tals,	Me	H3			
	il: emily.duncan@wate	erboards.c	a.gov			duong@ph.lac	county.gov		ole P	ole 1	aine	erva	Cont	SS, T N, N	PAF	(80)	Me	Ived	z x			
	Sample ID	2.467-9	Da	rte	Time		Location		Sample	Sample Type (G = Grab; C =	Container Type	Preservation Code	# of Containers	SS, TSS, NO3N, I	8270 PAH SIM	PCBc (8082 Aroclors)	Total Metals,	Dissolved Metals	FP, TN, NH3	TOC		Natas
1)	DPH 108		01/2-	125	0815	Venice	e City Beach, Venice P	ier	SSW	G	P	1	4	X	00	6			-		1L P	Notes lastic HDPE x4
2)	DPH 108		01/2-			Venice	e City Beach, Venice P	ier	SSW	G	G	1	2		Х	х						mber Glass x 2
3)	DPH 108		01/2-			Venice	e City Beach, Venice P	ier	SSW	G	Р	2	1				X					lastic HDPE (Nitric)
4)	DPH 108		01/2-			Venice	e City Beach, Venice P	ier	SSW	G	Р	2, 9	1					Х				0 mL Plastic HDPE (Nitric)
5)	DPH 108		01/2-			Venice	e City Beach, Venice P	ier	SSW	G	Ρ	4	1						x		250 mL Pl	astic HDPE (Sulfuric)
6)	DPH 108		01/27							G	G	4	3							X	40mL Amb	per Vial x3 (Sulfuric)
7)																			_			
8)																				C5A	3038	
9)																					27/2025 18	
10)																				JLH	Manu	al-PDF
Samp	les Relinquished By:		and all					1.000		Sam		Receiv			(I) and the	1.1.1.1.1.1.1.1	112.20	all and a	alet ba	ken he h	1000	
1)	Name (Print) and		1	1	Signatur	J D	Date 01 22 25	152		5	Na	ame (P	rint) a	nd Agency	-	-	Sign	ature		1	ate	Time
	JEN W. CHE		TH _	JY.	n Wourd	30			4	LE	201	<u>F1</u>	4	Jane	tre-	P	1 Ve	Ula	-	1/27/	22	15:30
2)	Samp Ville	ann	-	2	a V-1	Ma	1/27(23	18-0	91	C	20	p	0	Speak	1/550	2	~	2		172	115	100
3)											_											
4)																						
	Sample Matrix	Preser	vation C	odes	Sample Rec	eipt - Complete	ed by Laboratory pe	ersonnel:					Labo	ratory No	tes:					Special In	structions:	
SSW = S	Surface Fresh Water; Surface Salt Water; rrinking Water;	1. Cool, ≤ 2. HNO3 3. HCI	6 °C		Total Numbe	Total Number of Sample Containers Received:				Babcock - Can you analyze PFOS/PFOA if possible - Russ Colby Conductivity: Dissolved Oxygen:						required?						
GW = G SW = St	roundwater; ormwater;	4. H2SO4 5. Na2S20)3		San	Sample(s) Properly Coolee N / NA Temperature:				erature	5.4	56	.4	F		G	12		Return Sl	hipping Co	ontainers?	
OL = Ot SO = So	Nastewater; her Liquids; il / Sediment;	6. NaOH 7. NaOH/3 8. NH4Cl	ZnAcetat	te Sample(s) Intact (Y / N / NA				(F)	sity:	٢.	6-	l			10				F	Routine		
SL = Sludge / Slurry; 9. Filtered OS = Other Solids; 10. Freeze, ≤ -10 °C O = Other 11. None required								OIMA	-Help	desk@wa	terboard	s.ca.gov		Turn	Around T	Ime:	3-5 Day (Rush)	X				
12. Other Sample(s) Accepted: Y / N					1	Re	esults to:	emily	dunc	an@water	boards.c	a.gov					*48-Hr (Rush)					

Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov Sampler: A D L T L

v5.2.SWAMP IQ_2022.06.30

2- 6

1-5 **BABCOCK LABORATORIES**

6100 Quail Valley Court Riverside, CA 92507 T: (951) 653-3351

Vigi

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Page _____11____ of ____12____

Sample Collection Agency	:		Agreement	No.: 22-005-2	70			1	6			al analas	80 m - 2	100		24 10 11		1999		
Los Angele	s RWQCB							Other)	Plastic; G = Glass; O = Other)							Analyses	Requeste	d		
Sample Collection Agency	mple Collection Agency Address: 320 W. 4th Street, Los Angeles, CA 90013 Project Code: Project Code: Project Name: RWB4_WildFireResponse_2 Project Name: RWB4 Wildfire Respon GeoTracker Global ID:							0	0	(m		Contract Address of the						Respectively of the	Contraction of the	
320 W. 4th Street, Los	Angeles, C	A 90013		RWB4_WildFir	reResponse 2025		(M)	posite	Glass	Belo										
			Project Nam	ie: RWB4 Wil	dfire Response 202	25	Belo	Com	5	codes		DP,			ess					
			GeoTracker	Global ID:			Codes	=) *	lastic	(See Codes Below)		SO4, OP, D2N,		()	rdn					
Project Lead:			Field Lead:				See	= Grab;	= H	Code (, SC 02h		clore	Ca, Hardness	6				
Name: Emily Duncan			Name: Ash	ley Duong			Matrix	6 (6	ype	S	ers	AIk N+N	Σ	Aroc	, Ca	etal				
Phone: (213) 576-6679			Phone: 626	-430-5360			Mat	Typ	L L	tion	tain	rDS, 03h	H SI	82 /	tals	Ň	NH3			
Email: emily.duncan@wa	terboards.c	a.gov	Email: Ash	duong@ph.la	county.gov		ole	ole	aine	erva	Con	55, J N, N	PAI	(80	Me	lvec	Z			
Sample ID		Date	Time		Location		Sample	Sample Type (G	Container Type	Preservation	# of Containers	SS, TSS, TDS, Alk, SO4 NO3N, NO3N+NO2N,	8270 PAH SIM	PCBc (8082 Aroclors)	Total Metals,	Dissolved Metals	TP, TN, I	TOC		Notes
1) SMB 2-4		1/27/25	1107	Will Rog	gers State Beach, Pulga	SD	SSW		Р	1	4	X							1L P	astic HDPE x4
2) SMB 2-4		1/27:25	1111	Will Rog	gers State Beach, Pulga	SD	SSW	G	G	1	2		х	X					1L Ar	mber Glass x 2
3) SMB 2-4		1/27/25	1113	Will Rog	gers State Beach, Pulga	SD	SSW	G	Р	2	1				Х					lastic HDPE (Nitric)
4) SMB 2-4		1127125	1120	Will Rog	gers State Beach, Pulga	SD	SSW	G	Р	2,9	1					x				mL Plastic HDPE (Nitric)
5) SMB 2-4		1127175	1113	Will Rog	gers State Beach, Pulga	SD	SSW	G	Р	4	1						x	_		astic HDPE (Sulfuric)
6) SMB 2-4						SD	SSW	G	G	4	3							Х		per Vial x3 (Sulfuric)
7)		1																		
8)								1										C5A	3038	
9)																			/27/2025 18	INCOME DATE:
10)													_					ILH	Manu	ial-PDF
Samples Relinquished By:			TROPHNAL M		2010	Sam	ples F	Receiv	red B	v:	and Windowski	1.41.04.07	(Second			a she a	1			
Name (Print) and			Signatu	е	Date	Tim	ne		Na	ame (P	rint) a	nd Agency	/		Sign	ature		D	ate	Time
1) IT JEN W. CHEN	, DPH	- gges	Wentyl		01/27/25	RV										-				
2) Kary Vigil, OF	H-EH	Ka	topoan		01/27/25	143	6	Y.	-JE	JA). Cr	ten, 1)PH	40	Ju 1	Wey	YR	01/2	27/25	1438
3) VI-JEN W. G	HAU D	PH 4	Du W	ergh	01/27/25	15		D	Thu	11	. 11	1	_	R	AI_	111	00	1/27	25	15:00
4) Sonel 1/	Tonor	-	511	Mar	V27/25	18:	-	1	C	20	0	angue	2. 188	2	10			10	The	681
Sample Matrix	an and the state	vation Codes	Sample Rec	eipt - Complete	ed by Laboratory per	Contraction of the local data			500	,0	Labo	oratory No	tas:						structions:	1001
SFW = Surface Fresh Water;	1. Cool. ≤	6 °C				A PROPERTY OF	Babco	ock - Ca		analyz		Annual states of		uss Colley			3	pecial III	structions:	
SSW = Surface Salt Water;	SSW = Surface Salt Water; 2. HNO3 Total Number of Sample Containers Received:						Babcock - Can you analyze PFOS/PFOA if possible - Russ Colby Conductivity: N/A Evidence sample handling require							required?						
DW = Drinking Water; 3. HCl GW = Groundwater; 4. H2SO4 Sample(s) Proc				nple(s) Property (Cooled: Y N / NA			1ved ()) 4. C		NIA			-	TV I	(
SW = Stormwater; 5. Na2S2O3			in a fait i sharif i	Temperature: /	°C	Temp	eratur	e: 5	7.9	°F		6	6	0		Return Sh	ipping Co	ontainers?		
WW = Wastewater; 6. NaOH OL = Other Liquids; 7. NaOH/ZnAcetate			C ()			Turbic		88.												
SO = Soil / Sediment; 8. NH4Cl SL = Sludge / Slurry; 9. Filtered			sample(s)	Intacte Y ON / NA													R	Routine		
OS = Other Solids; 10. Freeze, ≤ -10 °C			Custody Seal(s) Intact: Y / N / NA					Send	OIMA	-Help	desk@wa	terboards	s.ca.gov		Turn	Around Ti	me:	3-5 Day (Rush)	X	
0 = Other 11. None required 12. Other			Sample(s) Accepted: Y / N			**		Re	esults to:	emily	.dunc	an@wate	rboards.ca	a.gov				*	*48-Hr	
							miles	a la cara										((Rush)	

Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov Sampler: Faty

1, Emy OKOhira, Daniel Bacani

v5.2.SWAMP IQ_2022.06.30

BABCOCK LABORATORIES

6100 Quail Valley Court

Riverside, CA 92507

an

T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Page 10 of 12 Sample Collection Agency: Agreement No.: 22-005-270 Other) G = Glass; O = Other) **Analyses Requested** Los Angeles RWQCB Sample Type (G = Grab; C = Composite; O = Sample Collection Agency Address: **Project Code:** Below) 320 W. 4th Street, Los Angeles, CA 90013 RWB4_WildFireResponse 2025 Codes Hardness Project Name: RWB4 Wildfire Response 2025 OP, Bel Container Type (P = Plastic; Codes GeoTracker Global ID: (See S04, SS, TSS, TDS, Alk, SO4 NO3N, NO3N+NO2N, PCBc (8082 Aruclors) **Preservation Code Project Lead:** See Field Lead: Ca, **Dissolved Metals** Matrix of Containers Name: Emily Duncan Name: Ashley Duong PAH SIM otal Metals, TN, NH3 Fhone: (213) 576-6679 Phone: 626-430-5360 Sample Email: emily.duncan@waterboards.ca.gov Email: Ashduong@ph.lacounty.gov 8270 F FOC Sample ID Date Time Location , LP * Notes 1127125 1032 1 SMB 1-18 Topanga County Beach, Topanga Canyon Lagoon SSW G Ρ 1 4 Х 1L Plastic HDPE x4 2] SMB 1-18 11271251037 Topanga County Beach, Topanga Canyon Lagoon SSW G G 1 2 X Х 1L Amber Glass x 2 127125 10:30 31 SMB 1-18 Topanga County Beach, Topanga Canyon Lagoon SSW P G 2 1 Х 250 mL Plastic HDPE (Nitric) 4 SMB 1-18 27/25 1047 Topanga County Beach, Topanga Canyon Lagoon SSW G Ρ 2,9 1 X Filtered 250 mL Plastic HDPE (Nitric) 5 SMB 1-18 1039 Topanga County Beach, Topanga Canyon Lagoon 27/25 SSW G P 4 1 Х 250 mL Plastic HDPE (Sulfuric) 61 SMB 1-18 104 27/25 Topanga County Beach, Topanga Canyon Lagoon SSW G G 4 3 X 40mL Amber Vial x3 (Sulfuric) 7) 81 C5A3038 9) Rc'd: 01/27/2025 18:01 JLH Manual-PDF 10) Samples Relinguished By: Samples Received By: Name (Print) and Agency Signature Time Date Name (Print) and Agency Signature Date Time 1) LIEN DPH 2) 1434 Katyvigi, Opt-Ett "JEN W. CHEN) n DPH 01 0127125 27 439 3) -JEN W. CHEN. DPH 01/27 1525 12 ,30 4) un 8.0 0 COCN lourd Env Sample Receipt - Completed by Laboratory personnel: **Preservation Codes** Sample Matrix Laboratory Notes: **Special Instructions:** SFW = Surface Fresh Water: 1. Cool. ≤ 6 °C Babcock - Can you analyze PFOS/PFOA if possible - Russ Colby Total Number of Sample Containers Received: SSW = Surface Salt Water; 2. HNO3 Evidence sample handling required? Conductivity: NA DW = Drinking Water; 3. HCl Dissolved Oxygen: N/A GW = Groundwater; 4. H2SO4 pH: 4-8 Sample(s) Properly Cooled(Y) N / NA SW = Stormwater: **Return Shipping Containers?** 5. Na2S2O3 Temperature: SS Temperature WW = Wastewater; 6. NaOH Turbidity: 109 OL = Other Liquids; 7. NaOH/ZnAcetate Sample(s) Intact: Y) N / NA Routine SO = Soil / Sediment; 8. NH4CI SL = Sludge / Slurry; 9. Filtered *3-5 Day OS = Other Solids: 10. Freeze, ≤ -10 °C Custody Seal(s) Intact: Y / N / NA Send OIMA-Helpdesk@waterboards.ca.gov Turn Around Time: O = Other 11. None required (Rush) Results 12. Other *48-Hr Sample(s) Accepted: Y / N to: emily.duncan@waterboards.ca.gov (Rush)

Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov Sampler:

End Ofohira, Daniel Bacani

v5.2.SWAMP IO 2022.06.30

1-4

1-**BABCOCK LABORATORIES**

6100 Quail Valley Court

Riverside, CA 92507

T: (951) 653-3351

Non-SWAMP/CEDEN Projects

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Chain of Custody Record & Sample Information

Comula Collection Arrow							_											rage_	/	0112	
Sample Collection Agency:			Agreement No.: 22-005-270					her)	her)			Anatyses Requested									
	es RWQCB						_	O = Other)	0 = Other)			Section of the	<u> 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997</u>		12.22	23.62.963					
Sample Collection Agend	Project Code:					ite; 0	O 'SSE	Below)													
320 W. 4th Street, L	os Angeles, CA	90013	RWB4_WildFireResponse_2025				(mo	sodw	G = Glass; (SS					s						
	Project Name: RWB4 Wildfire Response 2025 GeoTracker Global ID:				Sample Matrix (see codes Below	Sample Type (G = Grab; C = Co	Container Type (P = Plastic; G	(See Code	# of Containers	SS, TSS, TDS, Alk, SO4, OP, NO3N, NO3N+NO2N,	8270 PAH SIM	PCBc (8082 Aroclors)	Total Metals, Ca, Hardness	Dissolved Metals	TP, TN, NH3	TOC					
Project Lead:	Field Lead:							Code													
Name: Emily Duncan	Name: Ashley Duong							3													
Phone: (213) 576-6679	Phone: 626-430-5360 Email: Ashduong@ph.lacounty.gov							tior													
Email: emily.duncan@w								Preservation					Me								
Sample ID Date		Time Location						rese					otal								
1) SMB 1-14		1/27/25	0913	La Costa Beach, Las Flores Creel		Crook	SSW	G	P		## 4		00	Ā	Ť	ā	<u> </u>	<u> </u>		Notes	
							-	-		1		Х								Plastic HDPE x4	
	4 11 600			La Costa Beach, Las Flores Creek			SSW	G	G	1	2		Х	X	_				1L Amber Glass x 2		
		1/27/25		La Costa Beach, Las Flores Creek			SSW	G	Р	2	1				Х				250 mL	250 mL Plastic HDPE (Nitric)	
	4) SMB 1-14 1/27 25		0928	La Costa Beach, Las Flores Creek			SSW	G	Р	2, 9	1					Х			Filtered 250 mL Plastic HDPE (Nitric)		
5) SMB 1-14	SMB 1-14 1(27,25		0927	La Costa Beach, Las Flores Creek			SSW	G	Р	4	1						X		250 mL Plastic HDPE (Sulfuric)		
6) SMB 1-14		1127125	09:19	La Costa Beach, Las Flores Creek			SSW	G	G	4	3							X	40mL Arr	40mL Amber Vial x3 (Sulfuric)	
7)																	i				
8)																		C5.	A3038		
9)																		1/27/2025 1	I COTTO HOME		
10)																		JLH	Man	ual-PDF	
Samples Relinquished B	y:	H. H. H.	Pandene Sta	MARGER SHA			N.V. Sections	Sam	ples F	Receiv	ed By	<i>I</i> :	12 Parala	ANGERICA	10000	NAMES OF A		in an			
Name (Print) and Agency						ne Name (Print) a						V		Sign	ature			Date	Time		
1) Y-JEN W. CHE	EN, DPH	- 4K	tubland	30-	01/27/25	-FV															
2) Katyvigil DPH-EH PKO			affante 01/27/25 14			5 143	10	V TEA			1 (1	HEN DPH		Una 1		Dr. UP		01	27/25	1437	
3) J. Jen W. CHEN DIPH Y												Her II	UPII	0	Jan	Ner y			01/4	1921	
			Juna and the 01/27/25 152				Jan er			Y	1 ang		12	30	1/7			7/75	15:30		
4) Daniel	Villan	no D	Ma	n-	1/27/25	- 18:0	*	0	on	~ (ya	EEN	(1:221)	0	~			1/	2915	(80)	
Sample Matrix	Sample Matrix Preservation Codes				Sample Receipt - Completed by Laboratory personnel:				Laboratory Notes:						Sper				Instructions	:	
SFW = Surface Fresh Water; 1. Cool, ≤ 6 °C SSW = Surface Salt Water; 2. HNO3		Total Number of Sample Containers Received:				Babco	Babcock - Can you analyze PFOS/PFOA if possible - Conductivity: N/A							uss Colby Evidence sample ha				ng required?			
DW = Drinking Water; 3. HCl					Dissol	Dissolved Oxygen: N/A						1	C .								
GW = Groundwater; 4. H2SO4 SW = Stormwater; 5. Na2S2O3		Sample(s) Properly Cooled (Y /) V / NA			pH: 4	pH: 4.7 Temperature: 50.4°F							TCC Return Shipp			Shipping	Containers?				
WW = Wastewater; 6. NaOH		Temperature:°C			Turbio	Inditity: 40.7															
OL = Other Liquids; 7. NaOH/ZnAcetate SO = Soil / Sediment; 8. NH4Cl		Sample(s) Intact(Ŷ) N / NA					101										Routine				
SL = Sludge / Slurry; 9. Filtered OS = Other Solids; 10. Freeze, ≤ -10 °C		Custody Seal(s) Intact: Y / N /(NA)				Send OIMA-Help					desk@waterboards.ca.gov				Turn Around		Time:	*3-5 Day	X		
0 = Other	11. None re 12. Other _	11. None required 12. Other		Sample(s) A supervised by (A)			-	Results											(Rush) *48-Hr		
			Sample(s) Accepted: Y / N							emily	.aunci	can@waterboards.ca.gov							(0.1)		

Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov Sampler: Katy Vigil, Emy OKonira, Daniel Bacani

v5.2.SWAMP IQ_2022.06.30

(Rush)

BABCOCK LABORATORIES

6100 Quail Valley Court

Riverside, CA 92507

T: (951) 653-3351

Non-SWAMP/CEDEN Projects

Chain of Custody Record & Sample Information

1

Page

of 12

*This COC is for Non-CEDEN Projects only, results are not required to be in SWAMP 2.5 EDD Template

Sample Collection Agency: Agreement No.: 22-005-270 Other) Other) **Analyses Requested** Los Angeles RWQCB = Container Type (P = Plastic; G = Glass; O = Sample Collection Agency Address: Project Code: (See Codes Below) posite; 320 W. 4th Street, Los Angeles, CA 90013 **RWB4 WildFireResponse 2025** Codes Below) Ca, Hardness Sample Type (G = Grab; C = Com Project Name: RWB4 Wildfire Response 2025 OP, GeoTracker Global ID: S04, NO3N, NO3N+NO2N, PCBc (8082 Aroclors) (See Preservation Code Field Lead: Project Lead: TDS, Alk, **Dissolved Metals** of Containers Sample Matrix Name: Emily Duncan 8270 PAH SIM Name: Ashley Duong Metals, NH3 Phone: (213) 576-6679 Phone: 626-430-5360 TSS, TP, TN, I Email: emily.duncan@waterboards.ca.gov Email: ashduong@ph.lacounty.gov Total | TOC Date Sample ID Time Location SS, ** Notes 1) DPH 001 1127125 0946 Big Rock Beach, Piedra Gorda Canyon SD SSW G Ρ 1 4 X (4X) 1L Plastic HDPE 2) DPH 001 0948 Big Rock Beach, Piedra Gorda Canyon SD G 2 Х X 27:25 SSW G 1 (2X) 1L Amber Glass 3) DPH 001 0951 Big Rock Beach, Piedra Gorda Canyon SD SSW G Ρ 2 1 Х 127-25 250 mL Plastic HDPE (Nitric) 4) DPH 001 Big Rock Beach, Piedra Gorda Canyon SD 0957 SSW G Ρ 2,9 1 Х Filtered 250 mL Plastic HDPE (Nitric) 27125 5) DPH 001 Big Rock Beach, Piedra Gorda Canyon SD 095 SSW G P 4 1 X 250 mL Plastic HDPE (Sulfuric) 127125 6) **DPH 001** 27125 0953 Big Rock Beach, Piedra Gorda Canyon SD SSW G G 4 3 40mL Amber Vial x3 (Sulfuric) X 7) C5A3038 8) 9) Rc'd: 01/27/2025 18:01 JI H Manual-PDF 10) Samples Relinguished By: Samples Received By: Name (Print) and Agency Signature Time Name (Print) and Agency Date Signature Date Time KV 1) CHEN DPH Manula 1436 YITEN W. CHEN, DPH appro andaly 2) Katyvigil, DPH-Eth 01/27/25 01/27/25 1437 3) - JEN W. CHEN, DIPH 1525 20 4) anne Um 8-0 Lecolo Jon C 77 75 **Sample Matrix Preservation Codes** Sample Receipt - Completed by Laboratory personnel: Laboratory Notes: **Special Instructions:** SFW = Surface Fresh Water; 1. Cool, ≤ 6 °C Babcock - Can you analyze PFOS/PFOA if possible - Russ Colby Total Number of Sample Containers Received: SSW = Surface Salt Water; 2. HNO3 Conductivity: N/A Evidence sample handling required? DW = Drinking Water: 3. HCI Dissolved Oxygen: N/A pH: 4.8 GW = Groundwater; 4. H2SO4 Sample(s) Properly Cooled: YYN / NA **Return Shipping Containers?** Temperature: Slo.4°F SW = Stormwater; 5. Na2S2O3 Temperature °C Turbidity: 20.2 WW = Wastewater; 6. NaOH OL = Other Liquids; 7. NaOH/ZnAcetate Sample(s) Intagt: W N / NA Routine SO = Soil / Sediment: 8. NH4CI SL = Sludge / Slurry; 9. Filtered *3-5 Day OS = Other Solids; 10. Freeze, ≤ -10 °C Send OIMA-Helpdesk@waterboards.ca.gov Custody Seal(s) Intact: Y / N //NA Turn Around Time: (Rush) O = Other 11. None required Results 12. Other *48-Hr to: emily.duncan@waterboards.ca.gov Sample(s) Accepted: Y / N (Rush)

Distribution: Original copies accompany sample shipment to laboratory; Electronic copy emailed to aguerra@babcocklabs.com & OIMA-Helpdesk@waterboards.ca.gov

v5.2.SWAMP IQ_2022.06.30

Sampler: Katy Vigil, Emy OKohira, Daniel Bacani

1-6